tidytable

CRAN status CRAN RStudio mirror downloads R-CMD-check

Why tidytable?

Installation

Install the released version from CRAN with:

install.packages("tidytable")

Or install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("markfairbanks/tidytable")

General syntax

tidytable uses verb.() syntax to replicate tidyverse functions:

library(tidytable)

test_df <- data.table(x = 1:3, y = 4:6, z = c("a","a","b"))

test_df %>%
  select.(x, y, z) %>%
  filter.(x < 4, y > 1) %>%
  arrange.(x, y) %>%
  mutate.(double_x = x * 2,
          x_plus_y = x + y)
#> # A tidytable: 3 × 5
#>       x     y z     double_x x_plus_y
#>   <int> <int> <chr>    <dbl>    <int>
#> 1     1     4 a            2        5
#> 2     2     5 a            4        7
#> 3     3     6 b            6        9

A full list of functions can be found here.

Using “group by”

Group by calls are done by using the .by argument of any function that has “by group” functionality.

test_df %>%
  summarize.(avg_x = mean(x),
             count = n(),
             .by = z)
#> # A tidytable: 2 × 3
#>   z     avg_x count
#>   <chr> <dbl> <int>
#> 1 a       1.5     2
#> 2 b       3       1

.by vs. group_by()

tidytable follows data.table semantics where .by must be called each time you want a function to operate “by group”.

Below is some example tidytable code that utilizes .by that we’ll then compare to its dplyr equivalent. The goal is to grab the first two rows of each group using slice.(), then add a group row number column using mutate.():

library(tidytable)

test_df <- data.table(x = c("a", "a", "a", "b", "b"))

test_df %>%
  slice.(1:2, .by = x) %>%
  mutate.(group_row_num = row_number(), .by = x)
#> # A tidytable: 4 × 2
#>   x     group_row_num
#>   <chr>         <int>
#> 1 a                 1
#> 2 a                 2
#> 3 b                 1
#> 4 b                 2

Note how .by is called in both slice.() and mutate.().

Compared to a dplyr pipe chain that utilizes group_by(), where each function operates “by group” until ungroup() is called:

library(dplyr)

test_df <- tibble(x = c("a", "a", "a", "b", "b"))

test_df %>%
  group_by(x) %>%
  slice(1:2) %>%
  mutate(group_row_num = row_number()) %>%
  ungroup()
#> # A tibble: 4 x 2
#>   x     group_row_num
#>   <chr>         <int>
#> 1 a                 1
#> 2 a                 2
#> 3 b                 1
#> 4 b                 2

Note that the ungroup() call is unnecessary in tidytable.

tidyselect support

tidytable allows you to select/drop columns just like you would in the tidyverse by utilizing the tidyselect package in the background.

Normal selection can be mixed with all tidyselect helpers: everything(), starts_with(), ends_with(), any_of(), where(), etc.

test_df <- data.table(
  a = 1:3,
  b1 = 4:6,
  b2 = 7:9,
  c = c("a","a","b")
)

test_df %>%
  select.(a, starts_with("b"))
#> # A tidytable: 3 × 3
#>       a    b1    b2
#>   <int> <int> <int>
#> 1     1     4     7
#> 2     2     5     8
#> 3     3     6     9

To drop columns use a - sign:

test_df %>%
  select.(-a, -starts_with("b"))
#> # A tidytable: 3 × 1
#>   c    
#>   <chr>
#> 1 a    
#> 2 a    
#> 3 b

These same ideas can be used whenever selecting columns in tidytable functions - for example when using count.(), drop_na.(), across.(), pivot_longer.(), etc.

A full overview of selection options can be found here.

Using tidyselect in .by

tidyselect helpers also work when using .by:

test_df <- data.table(
  a = 1:3,
  b = 4:6,
  c = c("a","a","b"),
  d = c("a","a","b")
)

test_df %>%
  summarize.(avg_b = mean(b), .by = where(is.character))
#> # A tidytable: 2 × 3
#>   c     d     avg_b
#>   <chr> <chr> <dbl>
#> 1 a     a       4.5
#> 2 b     b       6

rlang compatibility

rlang can be used to write custom functions with tidytable functions. The embracing shortcut {{ }} works, or you can use enquo() with !! if you prefer.

df <- data.table(x = c(1,1,1), y = c(1,1,1), z = c("a","a","b"))

add_one <- function(data, add_col) {
  data %>%
    mutate.(new_col = {{ add_col }} + 1)
}

df %>%
  add_one(x)
#> # A tidytable: 3 × 4
#>       x     y z     new_col
#>   <dbl> <dbl> <chr>   <dbl>
#> 1     1     1 a           2
#> 2     1     1 a           2
#> 3     1     1 b           2

dt() helper

The dt() function makes regular data.table syntax pipeable, so you can easily mix tidytable syntax with data.table syntax:

df <- data.table(x = 1:3, y = 4:6, z = c("a", "a", "b"))

df %>%
  dt(, .(x, y, z)) %>%
  dt(x < 4 & y > 1) %>%
  dt(order(x, y)) %>%
  dt(, double_x := x * 2) %>%
  dt(, .(avg_x = mean(x)), by = z)
#> # A tidytable: 2 × 2
#>   z     avg_x
#>   <chr> <dbl>
#> 1 a       1.5
#> 2 b       3

Compatibility

Compatibility with dplyr (and other tidyverse packages)

If you want to use a dplyr function that hasn’t yet been implemented in tidytable you can. For example - dplyr::add_count():

library(tidytable)
library(dplyr)

test_df <- tidytable(x = 1:3, y = c("a", "a", "b"))

test_df %>%
  mutate.(double_x = x * 2) %>%
  add_count()
#> # A tidytable: 3 × 4
#>       x y     double_x     n
#>   <int> <chr>    <dbl> <int>
#> 1     1 a            2     3
#> 2     2 a            4     3
#> 3     3 b            6     3

Compatibility with data.table

If you want to use data.table you can - however it is recommended to first convert the object to a data.table if you are using any of data.table’s “set” operations to prevent issues with data.table’s modify-by-reference.

library(tidytable)
library(data.table)

test_df <- tidytable(x = 3:1, y = c("c", "b", "a"))

new_df <- test_df %>%
  mutate.(double_x = x * 2)

new_df <- as.data.table(new_df)

setorder(new_df, y)[]
#>    x y double_x
#> 1: 1 a        2
#> 2: 2 b        4
#> 3: 3 c        6

Speed Comparisons

For those interested in performance, speed comparisons can be found here.