
Package ‘s2dv’
June 16, 2021

Title A Set of Common Tools for Seasonal to Decadal Verification

Version 1.0.0

Description The advanced version of package 's2dverification'. It is
intended for 'seasonal to decadal' (s2d) climate forecast verification, but
it can also be used in other kinds of forecasts or general climate analysis.
This package is specially designed for the comparison between the experimental
and observational datasets. The functionality of the included functions covers
from data retrieval, data post-processing, skill scores against observation,
to visualization. Compared to 's2dverification', 's2dv' is more compatible
with the package 'startR', able to use multiple cores for computation and
handle multi-dimensional arrays with a higher flexibility.

Depends maps, methods, R (>= 3.6.0)

Imports abind, bigmemory, GEOmap, geomapdata, graphics, grDevices,
mapproj, parallel, ClimProjDiags, stats, plyr, ncdf4, NbClust,
multiApply (>= 2.1.1), SpecsVerification (>= 0.5.0), easyNCDF

Suggests easyVerification, testthat

License Apache License 2.0

URL https://earth.bsc.es/gitlab/es/s2dv/

BugReports https://earth.bsc.es/gitlab/es/s2dv/-/issues

LazyData true

SystemRequirements cdo

Encoding UTF-8

RoxygenNote 7.0.1

NeedsCompilation no

Author BSC-CNS [aut, cph],
An-Chi Ho [aut, cre],
Nuria Perez-Zanon [aut],
Roberto Bilbao [ctb],
Carlos Delgado [ctb],
Llorenç Lledó [ctb],
Andrea Manrique [ctb],
Deborah Verfaillie [ctb]

1

https://earth.bsc.es/gitlab/es/s2dv/
https://earth.bsc.es/gitlab/es/s2dv/-/issues

2 R topics documented:

Maintainer An-Chi Ho <an.ho@bsc.es>

Repository CRAN

Date/Publication 2021-06-16 15:40:02 UTC

R topics documented:
ACC . 3
AMV . 6
AnimateMap . 8
Ano . 11
Ano_CrossValid . 12
BrierScore . 13
CDORemap . 15
Clim . 20
clim.palette . 22
Cluster . 22
ColorBar . 25
Composite . 28
ConfigApplyMatchingEntries . 30
ConfigEditDefinition . 32
ConfigEditEntry . 33
ConfigFileOpen . 36
ConfigShowSimilarEntries . 39
ConfigShowTable . 41
Consist_Trend . 42
Corr . 44
Eno . 46
EOF . 47
EuroAtlanticTC . 49
Filter . 51
GMST . 52
GSAT . 55
Histo2Hindcast . 57
InsertDim . 58
LeapYear . 59
Load . 60
MeanDims . 75
NAO . 76
Persistence . 78
Plot2VarsVsLTime . 80
PlotACC . 82
PlotAno . 84
PlotBoxWhisker . 86
PlotClim . 89
PlotEquiMap . 91
PlotLayout . 97
PlotMatrix . 101

ACC 3

PlotSection . 103
PlotStereoMap . 105
PlotVsLTime . 110
ProbBins . 112
ProjectField . 114
RandomWalkTest . 115
RatioRMS . 116
RatioSDRMS . 118
Regression . 119
REOF . 121
Reorder . 123
RMS . 123
RMSSS . 125
sampleDepthData . 126
sampleMap . 127
sampleTimeSeries . 129
Season . 130
Smoothing . 131
Spectrum . 132
SPOD . 133
Spread . 135
StatSeasAtlHurr . 137
ToyModel . 138
TPI . 141
Trend . 143
UltimateBrier . 145

Index 147

ACC Compute the anomaly correlation coefficient between the forecast and
corresponding observation

Description

Calculate the anomaly correlation coefficient for the ensemble mean of each model and the corre-
sponding references over a spatial domain. It can return a forecast time series if the data contain
forest time dimension, and also the start date mean if the data contain start date dimension. The
domain of interest can be specified by providing the list of longitudes/latitudes (lon/lat) of the data
together with the corners of the domain: lonlatbox = c(lonmin, lonmax, latmin, latmax).

Usage

ACC(
exp,
obs,
dat_dim = "dataset",
space_dim = c("lat", "lon"),

4 ACC

avg_dim = "sdate",
memb_dim = "member",
lat = NULL,
lon = NULL,
lonlatbox = NULL,
conf = TRUE,
conftype = "parametric",
conf.lev = 0.95,
pval = TRUE,
ncores = NULL

)

Arguments

exp A numeric array of experimental anomalies with named dimensions. It must
have at least ’dat_dim’ and ’space_dim’.

obs A numeric array of observational anomalies with named dimensions. It must
have the same dimensions as ’exp’ except the length of ’dat_dim’ and ’memb_dim’.

dat_dim A character string indicating the name of dataset (nobs/nexp) dimension. The
default value is ’dataset’.

space_dim A character string vector of 2 indicating the name of the latitude and longi-
tude dimensions (in order) along which ACC is computed. The default value is
c(’lat’, ’lon’).

avg_dim A character string indicating the name of the dimension to be averaged. It must
be one of ’time_dim’. The mean ACC is calculated along averaged. If no need
to calculate mean ACC, set as NULL. The default value is ’sdate’.

memb_dim A character string indicating the name of the member dimension. If the data are
not ensemble ones, set as NULL. The default value is ’member’.

lat A vector of the latitudes of the exp/obs grids. Only required when the domain
of interested is specified. The default value is NULL.

lon A vector of the longitudes of the exp/obs grids. Only required when the domain
of interested is specified. The default value is NULL.

lonlatbox A numeric vector of 4 indicating the corners of the domain of interested: c(lonmin,
lonmax, latmin, latmax). Only required when the domain of interested is speci-
fied. The default value is NULL.

conf A logical value indicating whether to retrieve the confidence intervals or not.
The default value is TRUE.

conftype A charater string of "parametric" or "bootstrap". "parametric" provides a confi-
dence interval for the ACC computed by a Fisher transformation and a signif-
icance level for the ACC from a one-sided student-T distribution. "bootstrap"
provides a confidence interval for the ACC and MACC computed from boot-
strapping on the members with 100 drawings with replacement. To guaran-
tee the statistical robustness of the result, make sure that your experiment and
observation always have the same number of members. "bootstrap" requires
’memb_dim’ has value. The default value is ’parametric’.

ACC 5

conf.lev A numeric indicating the confidence level for the regression computation. The
default value is 0.95.

pval A logical value indicating whether to compute the p-value or not. The default
value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing the numeric arrays:

acc The ACC with the dimensions c(nexp, nobs, the rest of the dimension except
space_dim and memb_dim). nexp is the number of experiment (i.e., dat_dim in
exp), and nobs is the number of observation (i.e., dat_dim in obs).

conf.lower (if conftype = "parametric") or acc_conf.lower (if conftype = "bootstrap")

The lower confidence interval of ACC with the same dimensions as ACC. Only
present if conf = TRUE.

conf.upper (if conftype = "parametric") or acc_conf.upper (if conftype = "bootstrap")

The upper confidence interval of ACC with the same dimensions as ACC. Only
present if conf = TRUE.

p.val The p-value with the same dimensions as ACC. Only present if pval = TRUE and
codeconftype = "parametric".

macc The mean anomaly correlation coefficient with dimensions c(nexp, nobs, the rest
of the dimension except space_dim, memb_dim, and avg_dim). Only present if
’avg_dim’ is not NULL.

macc_conf.lower

The lower confidence interval of MACC with the same dimensions as MACC.
Only present if conftype = "bootstrap".

macc_conf.upper

The upper confidence interval of MACC with the same dimensions as MACC.
Only present if conftype = "bootstrap".

References

Joliffe and Stephenson (2012). Forecast Verification: A Practitioner’s Guide in Atmospheric Sci-
ence. Wiley-Blackwell.

Examples

sampleData$mod <- Season(sampleData$mod, monini = 11, moninf = 12, monsup = 2)
sampleData$obs <- Season(sampleData$obs, monini = 11, moninf = 12, monsup = 2)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
acc <- ACC(ano_exp, ano_obs)
acc_bootstrap <- ACC(ano_exp, ano_obs, conftype = 'bootstrap')

6 AMV

Combine acc results for PlotACC
res <- array(c(acc$conf.lower, acc$acc, acc$conf.upper, acc$p.val),

dim = c(dim(acc$acc), 4))
res_bootstrap <- array(c(acc$acc_conf.lower, acc$acc, acc$acc_conf.upper, acc$p.val),

dim = c(dim(acc$acc), 4))

PlotACC(res, startDates)
PlotACC(res_bootstrap, startDates)

AMV Compute the Atlantic Multidecadal Variability (AMV) index

Description

The Atlantic Multidecadal Variability (AMV), also known as Atlantic Multidecadal Oscillation
(AMO), is a mode of natural variability of the sea surface temperatures (SST) over the North
Atlantic Ocean on multi-decadal time scales. The AMV index is computed as the difference of
weighted-averaged SST anomalies over the North Atlantic region (0ºN-60ºN, 280ºE-360ºE) and the
weighted-averaged SST anomalies over 60ºS-60ºN, 0ºE-360ºE (Trenberth & Dennis, 2005; Doblas-
Reyes et al., 2013). If different members and/or datasets are provided, the climatology (used to
calculate the anomalies) is computed individually for all of them.

Usage

AMV(
data,
data_lats,
data_lons,
type,
lat_dim = "lat",
lon_dim = "lon",
mask = NULL,
monini = 11,
fmonth_dim = "fmonth",
sdate_dim = "sdate",
indices_for_clim = NULL,
year_dim = "year",
month_dim = "month",
na.rm = TRUE,
ncores = NULL

)

Arguments

data A numerical array to be used for the index computation with, at least, the dimen-
sions: 1) latitude, longitude, start date and forecast month (in case of decadal

AMV 7

predictions), 2) latitude, longitude, year and month (in case of historical simu-
lations or observations). This data has to be provided, at least, over the whole
region needed to compute the index.

data_lats A numeric vector indicating the latitudes of the data.
data_lons A numeric vector indicating the longitudes of the data.
type A character string indicating the type of data (’dcpp’ for decadal predictions,

’hist’ for historical simulations, or ’obs’ for observations or reanalyses).
lat_dim A character string of the name of the latitude dimension. The default value is

’lat’.
lon_dim A character string of the name of the longitude dimension. The default value is

’lon’.
mask An array of a mask (with 0’s in the grid points that have to be masked) or NULL

(i.e., no mask is used). This parameter allows to remove the values over land
in case the dataset is a combination of surface air temperature over land and
sea surface temperature over the ocean. Also, it can be used to mask those grid
points that are missing in the observational dataset for a fair comparison between
the forecast system and the reference dataset. The default value is NULL.

monini An integer indicating the month in which the forecast system is initialized. Only
used when parameter ’type’ is ’dcpp’. The default value is 11, i.e., initialized in
November.

fmonth_dim A character string indicating the name of the forecast month dimension. Only
used if parameter ’type’ is ’dcpp’. The default value is ’fmonth’.

sdate_dim A character string indicating the name of the start date dimension. Only used if
parameter ’type’ is ’dcpp’. The default value is ’sdate’.

indices_for_clim

A numeric vector of the indices of the years to compute the climatology for cal-
culating the anomalies, or NULL so the climatology is calculated over the whole
period. If the data are already anomalies, set it to FALSE. The default value is
NULL.
In case of parameter ’type’ is ’dcpp’, ’indices_for_clim’ must be relative to the
first forecast year, and the climatology is automatically computed over the com-
mon calendar period for the different forecast years.

year_dim A character string indicating the name of the year dimension The default value
is ’year’. Only used if parameter ’type’ is ’hist’ or ’obs’.

month_dim A character string indicating the name of the month dimension. The default
value is ’month’. Only used if parameter ’type’ is ’hist’ or ’obs’.

na.rm A logical value indicanting whether to remove NA values. The default value is
TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A numerical array with the AMV index with the same dimensions as data except the lat_dim,
lon_dim and fmonth_dim (month_dim) in case of decadal predictions (historical simulations or
observations). In case of decadal predictions, a new dimension ’fyear’ is added.

8 AnimateMap

Examples

Observations or reanalyses
obs <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12))
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_obs <- AMV(data = obs, data_lats = lat, data_lons = lon, type = 'obs')

Historical simulations
hist <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12, member = 5))
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_hist <- AMV(data = hist, data_lats = lat, data_lons = lon, type = 'hist')

Decadal predictions
dcpp <- array(1:100, dim = c(sdate = 5, lat = 19, lon = 37, fmonth = 24, member = 5))
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_dcpp <- AMV(data = dcpp, data_lats = lat, data_lons = lon, type = 'dcpp', monini = 1)

AnimateMap Animate Maps of Forecast/Observed Values or Scores Over Forecast
Time

Description

Create animations of maps in an equi-rectangular or stereographic projection, showing the anoma-
lies, the climatologies, the mean InterQuartile Range, Maximum-Mininum, Standard Deviation,
Median Absolute Deviation, the trends, the RMSE, the correlation or the RMSSS, between mod-
elled and observed data along the forecast time (lead-time) for all input experiments and input
observational datasets.

Usage

AnimateMap(
var,
lon,
lat,
toptitle = rep("", 11),
sizetit = 1,
units = "",
monini = 1,
freq = 12,
msk95lev = FALSE,
brks = NULL,
cols = NULL,
filled.continents = FALSE,
lonmin = 0,

AnimateMap 9

lonmax = 360,
latmin = -90,
latmax = 90,
intlon = 20,
intlat = 30,
drawleg = TRUE,
subsampleg = 1,
colNA = "white",
equi = TRUE,
fileout = c("output1_animvsltime.gif", "output2_animvsltime.gif",
"output3_animvsltime.gif"),

...
)

Arguments

var Matrix of dimensions (nltime, nlat, nlon) or (nexp/nmod, nltime, nlat, nlon)
or (nexp/nmod, 3/4, nltime, nlat, nlon) or (nexp/nmod, nobs, 3/4, nltime, nlat,
nlon).

lon Vector containing longtitudes (degrees).

lat Vector containing latitudes (degrees).

toptitle c(”,”, . . .) array of main title for each animation, optional. If RMS, RMSSS,
correlations: first exp with successive obs, then second exp with successive obs,
etc ...

sizetit Multiplicative factor to increase title size, optional.

units Units, optional.

monini Starting month between 1 and 12. Default = 1.

freq 1 = yearly, 12 = monthly, 4 = seasonal ...

msk95lev TRUE/FALSE grid points with dots if 95% significance level reached. Default
= FALSE.

brks Limits of colour levels, optional. For example: seq(min(var), max(var), (max(var)
- min(var)) / 10).

cols Vector of colours of length(brks) - 1, optional.
filled.continents

Continents filled in grey (TRUE) or represented by a black line (FALSE). De-
fault = TRUE. Filling unavailable if crossing Greenwich and equi = TRUE. Fill-
ing unavailable if square = FALSE and equi = TRUE.

lonmin Westward limit of the domain to plot (> 0 or < 0). Default : 0 degrees.

lonmax Eastward limit of the domain to plot (> 0 or < 0). lonmax > lonmin. Default :
360 degrees.

latmin Southward limit of the domain to plot. Default : -90 degrees.

latmax Northward limit of the domain to plot. Default : 90 degrees.

intlon Interval between longitude ticks on x-axis. Default = 20 degrees.

10 AnimateMap

intlat Interval between latitude ticks on y-axis for equi = TRUE or between latitude
circles for equi = FALSE. Default = 30 degrees.

drawleg Draw a colorbar. Can be FALSE only if square = FALSE or equi = FALSE.
Default = TRUE.

subsampleg Supsampling factor of the interval between ticks on colorbar. Default = 1 =
every colour level.

colNA Color used to represent NA. Default = ’white’.

equi TRUE/FALSE == cylindrical equidistant/stereographic projection. Default: TRUE.

fileout c(”, ”, . . .) array of output file name for each animation. If RMS, RMSSS,
correlations : first exp with successive obs, then second exp with successive
obs, etc ...

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bty cex cex.axis cex.lab cex.main cex.sub cin col.axis col.lab col.main
col.sub cra crt csi cxy err family fg fig font font.axis font.lab font.main font.sub
las lheight ljoin lmitre lty lwd mai mar mex mfcol mfrow mfg mgp mkh oma
omd omi page pch plt pty smo srt tck tcl usr xaxp xaxs xaxt xlog xpd yaxp yaxs
yaxt ylbias ylog.
For more information about the parameters see ‘par‘.

Details

Examples of input:

1. Outputs from clim (exp, obs, memb = FALSE): (nmod, nltime, nlat, nlon) or (nobs, nltime,
nlat, nlon)

2. Model output from load/ano/smoothing: (nmod, nmemb, sdate, nltime, nlat, nlon) then passed
through spread(var, posdim = 2, narm = TRUE) & mean1dim(var, posdim = 3, narm = TRUE)
or through trend(mean1dim(var, 2), posTR = 2): (nmod, 3, nltime, nlat, nlon) animates average
along start dates of IQR/MaxMin/SD/MAD across members or trends of the ensemble-mean
computed accross the start dates.

3. model and observed output from load/ano/smoothing: (nmod, nmemb, sdate, nltime, nlat,
nlon) & (nobs, nmemb, sdate, nltime, nlat, nlon) then averaged along members mean1dim(var_exp/var_obs,
posdim = 2): (nmod, sdate, nltime, nlat, nlon) (nobs, sdate, nltime, nlat, nlon) then passed
through corr(exp, obs, posloop = 1, poscor = 2) or RMS(exp, obs, posloop = 1, posRMS = 2):
(nmod, nobs, 3, nltime, nlat, nlon) animates correlations or RMS between each exp & each
obs against leadtime.

Examples

See ?Load for explanations on the first part of this example
Not run:

data_path <- system.file('sample_data', package = 's2dv')
expA <- list(name = 'experiment', path = file.path(data_path,

'model/EXP_NAME/$STORE_FREQ$_mean/VAR_NAME_3hourly',
'VAR_NAME_$START_DATE$.nc'))

obsX <- list(name = 'observation', path = file.path(data_path,
'OBS_NAME/$STORE_FREQ$_mean/VAR_NAME',

Ano 11

'VAR_NAME_$YEAR$$MONTH$.nc'))

Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(expA), list(obsX), startDates,

output = 'lonlat', latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40)

End(Not run)

clim <- Clim(sampleData$mod, sampleData$obs, memb = FALSE)
Not run:

AnimateMap(clim$clim_exp, sampleData$lon, sampleData$lat,
toptitle = "climatology of decadal prediction", sizetit = 1,
units = "degree", brks = seq(270, 300, 3), monini = 11, freq = 12,
msk95lev = FALSE, filled.continents = TRUE, intlon = 10, intlat = 10,
fileout = 'clim_dec.gif')

End(Not run)
More examples in s2dverification but are deleted for now

Ano Compute forecast or observation anomalies

Description

This function computes anomalies from a multidimensional data array and a climatology array.

Usage

Ano(data, clim, ncores = NULL)

Arguments

data A numeric array with named dimensions, representing the model or observa-
tional data to be calculated the anomalies. It should involve all the dimensions
in parameter ’clim’, and it can have more other dimensions.

clim A numeric array with named dimensions, representing the climatologies to be
deducted from parameter ’data’. It can be generated by Clim(). The dimensions
should all be involved in parameter ’data’ with the same length.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

An array with same dimensions as parameter ’data’.

12 Ano_CrossValid

Examples

Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)

PlotAno(ano_exp, ano_obs, startDates,
toptitle = 'Anomaly', ytitle = c('K', 'K', 'K'),
legends = 'ERSST', biglab = FALSE, fileout = 'tos_ano.png')

Ano_CrossValid Compute anomalies in cross-validation mode

Description

Compute the anomalies from the arrays of the experimental and observational data output by sub-
tracting the climatologies computed with a leave-one-out cross validation technique and a per-pair
method (Garcia-Serrano and Doblas-Reyes, CD, 2012). Per-pair climatology means that only the
start dates covered by the whole experiments/observational datasets will be used. In other words,
the startdates which do not all have values along ’dat_dim’ dimension of both the ’exp’ and ’obs’
are excluded when computing the climatologies.

Usage

Ano_CrossValid(
exp,
obs,
time_dim = "sdate",
dat_dim = c("dataset", "member"),
memb_dim = "member",
memb = TRUE,
ncores = NULL

)

Arguments

exp A named numeric array of experimental data, with at least dimensions ’time_dim’
and ’dat_dim’.

obs A named numeric array of observational data, same dimensions as parameter
’exp’ except along ’dat_dim’.

time_dim A character string indicating the name of the time dimension. The default value
is ’sdate’.

dat_dim A character vector indicating the name of the dataset and member dimensions.
When calculating the climatology, if data at one startdate (i.e., ’time_dim’) is
not complete along ’dat_dim’, this startdate along ’dat_dim’ will be discarded.
The default value is "c(’dataset’, ’member’)".

BrierScore 13

memb_dim A character string indicating the name of the member dimension. Only used
when parameter ’memb’ is FALSE. It must be one element in ’dat_dim’. The
default value is ’member’.

memb A logical value indicating whether to subtract the climatology based on the in-
dividual members (TRUE) or the ensemble mean over all members (FALSE)
when calculating the anomalies. The default value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list of 2:

$exp A numeric array with the same dimensions as ’exp’. The dimension order may
change.

$obs A numeric array with the same dimensions as ’obs’.The dimension order may
change.

Examples

Load sample data as in Load() example:
example(Load)
anomalies <- Ano_CrossValid(sampleData$mod, sampleData$obs)
Not run:
PlotAno(anomalies$exp, anomalies$obs, startDates,

toptitle = paste('anomalies'), ytitle = c('K', 'K', 'K'),
legends = 'ERSST', biglab = FALSE, fileout = 'tos_ano_crossvalid.eps')

End(Not run)

BrierScore Compute Brier score, its decomposition, and Brier skill score

Description

Compute the Brier score (BS) and the components of its standard decompostion with the two within-
bin components described in Stephenson et al., (2008). It also returns the bias-corrected decompo-
sition of the BS (Ferro and Fricker, 2012). BSS has the climatology as the reference forecast.

Usage

BrierScore(
exp,
obs,
thresholds = seq(0.1, 0.9, 0.1),
time_dim = "sdate",
dat_dim = NULL,
memb_dim = NULL,
ncores = NULL

)

14 BrierScore

Arguments

exp A vector or a numeric array with named dimensions. It should be the predicted
probabilities which are within the range [0, 1] if memb_dim doesn’t exist. If it
has memb_dim, the value should be 0 or 1, and the predicted probabilities will
be computed by ensemble mean. The dimensions must at least have ’time_dim’.
range [0, 1].

obs A numeric array with named dimensions of the binary observations (0 or 1). The
dimension must be the same as ’exp’ except memb_dim, which is optional. If
it has ’memb_dim’, then the length must be 1. The length of ’dat_dim’ can be
different from ’exp’ if it has.

thresholds A numeric vector used to bin the forecasts. The default value is seq(0.1,0.9,0.1),
which means that the bins are [0,0.1),[0.1,0.2),... [0.9,1].

time_dim A character string indicating the name of dimension along which Brier score is
computed. The default value is ’sdate’.

dat_dim A character string indicating the name of dataset dimension in ’exp’ and ’obs’.
The length of this dimension can be different between ’exp’ and ’obs’. The
default value is NULL.

memb_dim A character string of the name of the member dimension in ’exp’ (and ’obs’,
optional). The function will do the ensemble mean over this dimension. If there
is no member dimension, set NULL. The default value is NULL.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list that contains:

$rel standard reliability

$res standard resolution

$unc standard uncertainty

$bs Brier score

$bs_check_res rel - res + unc

$bss_res res - rel / unc

$gres generalized resolution

$bs_check_gres rel - gres + unc

$bss_gres gres - rel / unc
$rel_bias_corrected

bias - corrected rel
$gres_bias_corrected

bias - corrected gres
$unc_bias_corrected

bias - corrected unc
$bss_bias_corrected

gres_bias_corrected - rel_bias_corrected / unc_bias_corrected

CDORemap 15

$nk number of forecast in each bin

$fkbar average probability of each bin

$okbar relative frequency that the observed event occurred

The data type and dimensions of the items depend on if the input ’exp’ and ’obs’ are:
(a) Vectors
(b) Arrays with ’dat_dim’ specified
(c) Arrays with no ’dat_dim’ specified
Items ’rel’, ’res’, ’unc’, ’bs’, ’bs_check_res’, ’bss_res’, ’gres’, ’bs_check_gres’, ’bss_gres’, ’rel_bias_corrected’,
’gres_bias_corrected’, ’unc_bias_corrected’, and ’bss_bias_corrected’ are (a) a number (b) an ar-
ray with dimensions c(nexp, nobs, all the rest dimensions in ’exp’ and ’obs’ expect ’time_dim’ and
’memb_dim’) (c) an array with dimensions of ’exp’ and ’obs’ except ’time_dim’ and ’memb_dim’
Items ’nk’, ’fkbar’, and ’okbar’ are (a) a vector of length of bin number determined by ’threshold’
(b) an array with dimensions c(nexp, nobs, no. of bins, all the rest dimensions in ’exp’ and ’obs’ ex-
pect ’time_dim’ and ’memb_dim’) (c) an array with dimensions c(no. of bin, all the rest dimensions
in ’exp’ and ’obs’ expect ’time_dim’ and ’memb_dim’)

References

Wilks (2006) Statistical Methods in the Atmospheric Sciences.
Stephenson et al. (2008). Two extra components in the Brier score decomposition. Weather and
Forecasting, 23: 752-757.
Ferro and Fricker (2012). A bias-corrected decomposition of the BS. Quarterly Journal of the Royal
Meteorological Society, DOI: 10.1002/qj.1924.

Examples

Inputs are vectors
exp <- runif(10)
obs <- round(exp)
x <- BrierScore(exp, obs)

Inputs are arrays
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
bins_ano_exp <- ProbBins(ano_exp, thr = c(1/3, 2/3))
bins_ano_obs <- ProbBins(ano_obs, thr = c(1/3, 2/3))
res <- BrierScore(bins_ano_exp, MeanDims(bins_ano_obs, 'member'), memb_dim = 'member')

CDORemap Interpolate arrays with longitude and latitude dimensions using CDO

16 CDORemap

Description

This function takes as inputs a multidimensional array (optional), a vector or matrix of longitudes, a
vector or matrix of latitudes, a destination grid specification, and the name of a method to be used to
interpolate (one of those available in the ’remap’ utility in CDO). The interpolated array is returned
(if provided) together with the new longitudes and latitudes.

CDORemap() permutes by default the dimensions of the input array (if needed), splits it in chunks
(CDO can work with data arrays of up to 4 dimensions), generates a file with the data of each chunk,
interpolates it with CDO, reads it back into R and merges it into a result array. If no input array is
provided, the longitude and latitude vectors will be transformed only. If the array is already on the
desired destination grid, no transformation is performed (this behvaiour works only for lonlat and
gaussian grids).

Any metadata attached to the input data array, longitudes or latitudes will be preserved or accord-
ingly modified.

Usage

CDORemap(
data_array = NULL,
lons,
lats,
grid,
method,
avoid_writes = TRUE,
crop = TRUE,
force_remap = FALSE,
write_dir = tempdir()

)

Arguments

data_array Multidimensional numeric array to be interpolated. If provided, it must have
at least a longitude and a latitude dimensions, identified by the array dimen-
sion names. The names for these dimensions must be one of the recognized by
s2dverification (can be checked with s2dverification:::.KnownLonNames()
and s2dverification:::.KnownLatNames()).

lons Numeric vector or array of longitudes of the centers of the grid cells. Its size
must match the size of the longitude/latitude dimensions of the input array.

lats Numeric vector or array of latitudes of the centers of the grid cells. Its size must
match the size of the longitude/latitude dimensions of the input array.

grid Character string specifying either a name of a target grid (recognized by CDO;
e.g.: ’r256x128’, ’t106grid’) or a path to another NetCDF file which to read the
target grid from (a single grid must be defined in such file).

method Character string specifying an interpolation method (recognized by CDO; e.g.:
’con’, ’bil’, ’bic’, ’dis’). The following long names are also supported: ’conser-
vative’, ’bilinear’, ’bicubic’ and ’distance-weighted’.

CDORemap 17

avoid_writes The step of permutation is needed when the input array has more than 3 dimen-
sions and none of the longitude or latitude dimensions in the right-most position
(CDO would not accept it without permuting previously). This step, executed
by default when needed, can be avoided for the price of writing more intermedi-
ate files (whis usually is unconvenient) by setting the parameter avoid_writes
= TRUE.

crop Whether to crop the data after interpolation with ’cdo sellonlatbox’ (TRUE) or
to extend interpolated data to the whole world as CDO does by default (FALSE).
If crop = TRUE then the longitude and latitude borders which to crop at are taken
as the limits of the cells at the borders (’lons’ and ’lats’ are perceived as cell cen-
ters), i.e. the resulting array will contain data that covers the same area as the
input array. This is equivalent to specifying crop = 'preserve', i.e. preserving
area. If crop = 'tight' then the borders which to crop at are taken as the mini-
mum and maximum cell centers in ’lons’ and ’lats’, i.e. the area covered by the
resulting array may be smaller if interpolating from a coarse grid to a fine grid.
The parameter ’crop’ also accepts a numeric vector of custom borders which to
crop at: c(western border, eastern border, southern border, northern border).

force_remap Whether to force remapping, even if the input data array is already on the target
grid.

write_dir Path to the directory where to create the intermediate files for CDO to work. By
default, the R session temporary directory is used (tempdir()).

Value

A list with the following components:

’data_array’ The interpolated data array (if an input array is provided at all, NULL other-
wise).

’lons’ The longitudes of the data on the destination grid.

’lats’ The latitudes of the data on the destination grid.

Examples

Not run:
Interpolating only vectors of longitudes and latitudes
lon <- seq(0, 360 - 360/50, length.out = 50)
lat <- seq(-90, 90, length.out = 25)
tas2 <- CDORemap(NULL, lon, lat, 't170grid', 'bil', TRUE)

Minimal array interpolation
tas <- array(1:50, dim = c(25, 50))
names(dim(tas)) <- c('lat', 'lon')
lon <- seq(0, 360 - 360/50, length.out = 50)
lat <- seq(-90, 90, length.out = 25)
tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)

Metadata can be attached to the inputs. It will be preserved and
accordignly modified.
tas <- array(1:50, dim = c(25, 50))

18 CDORemap

names(dim(tas)) <- c('lat', 'lon')
lon <- seq(0, 360 - 360/50, length.out = 50)
metadata <- list(lon = list(units = 'degrees_east'))
attr(lon, 'variables') <- metadata
lat <- seq(-90, 90, length.out = 25)
metadata <- list(lat = list(units = 'degrees_north'))
attr(lat, 'variables') <- metadata
metadata <- list(tas = list(dim = list(lat = list(len = 25,

vals = lat),
lon = list(len = 50,

vals = lon)
)))

attr(tas, 'variables') <- metadata
tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)

Arrays of any number of dimensions in any order can be provided.
num_lats <- 25
num_lons <- 50
tas <- array(1:(10*num_lats*10*num_lons*10),

dim = c(10, num_lats, 10, num_lons, 10))
names(dim(tas)) <- c('a', 'lat', 'b', 'lon', 'c')
lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
metadata <- list(lon = list(units = 'degrees_east'))
attr(lon, 'variables') <- metadata
lat <- seq(-90, 90, length.out = num_lats)
metadata <- list(lat = list(units = 'degrees_north'))
attr(lat, 'variables') <- metadata
metadata <- list(tas = list(dim = list(a = list(),

lat = list(len = num_lats,
vals = lat),

b = list(),
lon = list(len = num_lons,

vals = lon),
c = list()
)))

attr(tas, 'variables') <- metadata
tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
The step of permutation can be avoided but more intermediate file writes
will be performed.
tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)

If the provided array has the longitude or latitude dimension in the
right-most position, the same number of file writes will be performed,
even if avoid_wrties = FALSE.
num_lats <- 25
num_lons <- 50
tas <- array(1:(10*num_lats*10*num_lons*10),

dim = c(10, num_lats, 10, num_lons))
names(dim(tas)) <- c('a', 'lat', 'b', 'lon')
lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
metadata <- list(lon = list(units = 'degrees_east'))
attr(lon, 'variables') <- metadata
lat <- seq(-90, 90, length.out = num_lats)

CDORemap 19

metadata <- list(lat = list(units = 'degrees_north'))
attr(lat, 'variables') <- metadata
metadata <- list(tas = list(dim = list(a = list(),

lat = list(len = num_lats,
vals = lat),

b = list(),
lon = list(len = num_lons,

vals = lon)
)))

attr(tas, 'variables') <- metadata
tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)

An example of an interpolation from and onto a rectangular regular grid
num_lats <- 25
num_lons <- 50
tas <- array(1:(1*num_lats*num_lons), dim = c(num_lats, num_lons))
names(dim(tas)) <- c('y', 'x')
lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),

dim = c(num_lons, num_lats))
metadata <- list(lon = list(units = 'degrees_east'))
names(dim(lon)) <- c('x', 'y')
attr(lon, 'variables') <- metadata
lat <- t(array(seq(-90, 90, length.out = num_lats),

dim = c(num_lats, num_lons)))
metadata <- list(lat = list(units = 'degrees_north'))
names(dim(lat)) <- c('x', 'y')
attr(lat, 'variables') <- metadata
tas2 <- CDORemap(tas, lon, lat, 'r100x50', 'bil')

An example of an interpolation from an irregular grid onto a gaussian grid
num_lats <- 25
num_lons <- 50
tas <- array(1:(10*num_lats*10*num_lons*10),

dim = c(10, num_lats, 10, num_lons))
names(dim(tas)) <- c('a', 'j', 'b', 'i')
lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),

dim = c(num_lons, num_lats))
metadata <- list(lon = list(units = 'degrees_east'))
names(dim(lon)) <- c('i', 'j')
attr(lon, 'variables') <- metadata
lat <- t(array(seq(-90, 90, length.out = num_lats),

dim = c(num_lats, num_lons)))
metadata <- list(lat = list(units = 'degrees_north'))
names(dim(lat)) <- c('i', 'j')
attr(lat, 'variables') <- metadata
tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')

Again, the dimensions can be in any order
num_lats <- 25
num_lons <- 50
tas <- array(1:(10*num_lats*10*num_lons),

dim = c(10, num_lats, 10, num_lons))

20 Clim

names(dim(tas)) <- c('a', 'j', 'b', 'i')
lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),

dim = c(num_lons, num_lats))
names(dim(lon)) <- c('i', 'j')
lat <- t(array(seq(-90, 90, length.out = num_lats),

dim = c(num_lats, num_lons)))
names(dim(lat)) <- c('i', 'j')
tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
It is ossible to specify an external NetCDF file as target grid reference
tas2 <- CDORemap(tas, lon, lat, 'external_file.nc', 'bil')

End(Not run)

Clim Compute Bias Corrected Climatologies

Description

This function computes per-pair climatologies for the experimental and observational data using
one of the following methods:

1. per-pair method (Garcia-Serrano and Doblas-Reyes, CD, 2012)

2. Kharin method (Karin et al, GRL, 2012)

3. Fuckar method (Fuckar et al, GRL, 2014)

Per-pair climatology means that only the startdates covered by the whole experiments/observational
dataset will be used. In other words, the startdates which are not all available along ’dat_dim’
dimension of both the ’exp’ and ’obs’ are excluded when computing the climatologies.

Usage

Clim(
exp,
obs,
time_dim = "sdate",
dat_dim = c("dataset", "member"),
method = "clim",
ftime_dim = "ftime",
memb = TRUE,
memb_dim = "member",
na.rm = TRUE,
ncores = NULL

)

Clim 21

Arguments

exp A named numeric array of experimental data, with at least two dimensions
’time_dim’ and ’dat_dim’.

obs A named numeric array of observational data, same dimensions as parameter
’exp’ except along ’dat_dim’.

time_dim A character string indicating the name of dimension along which the climatolo-
gies are computed. The default value is ’sdate’.

dat_dim A character vector indicating the name of the dataset and member dimensions.
If data at one startdate (i.e., ’time_dim’) are not complete along ’dat_dim’, this
startdate along ’dat_dim’ will be discarded. The default value is "c(’dataset’,
’member’)".

method A character string indicating the method to be used. The options include ’clim’,
’kharin’, and ’NDV’. The default value is ’clim’.

ftime_dim A character string indicating the name of forecast time dimension. Only used
when method = ’NDV’. The default value is ’ftime’.

memb A logical value indicating whether to remain ’memb_dim’ dimension (TRUE)
or do ensemble mean over ’memb_dim’ (FALSE). The default value is TRUE.

memb_dim A character string indicating the name of the member dimension. Only used
when parameter ’memb’ is FALSE. It must be one element in ’dat_dim’. The
default value is ’member’.

na.rm A logical value indicating whether to remove NA values along ’time_dim’ when
calculating climatology (TRUE) or return NA if there is NA along ’time_dim’
(FALSE). The default value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list of 2:

$clim_exp A numeric array with the same dimensions as parameter ’exp’ but dimension
’time_dim’ is moved to the first position. If parameter ’method’ is ’clim’, di-
mension ’time_dim’ is removed. If parameter ’memb’ is FALSE, dimension
’memb_dim’ is also removed.

$clim_obs A numeric array with the same dimensions as parameter ’exp’ except dimension
’time_dim’ is removed. If parameter ’memb’ is FALSE, dimension ’memb_dim’
is also removed.

Examples

Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
clim2 <- Clim(sampleData$mod, sampleData$obs, method = 'kharin', memb = FALSE)

PlotClim(clim$clim_exp, clim$clim_obs,

22 Cluster

toptitle = paste('sea surface temperature climatologies'),
ytitle = 'K', monini = 11, listexp = c('CMIP5 IC3'),
listobs = c('ERSST'), biglab = FALSE, fileout = 'tos_clim.eps')

clim.palette Generate Climate Color Palettes

Description

Generates a colorblind friendly color palette with color ranges useful in climate temperature variable
plotting.

Usage

clim.palette(palette = "bluered")

clim.colors(n, palette = "bluered")

Arguments

palette Which type of palette to generate: from blue through white to red (’bluered’),
from red through white to blue (’redblue’), from yellow through orange to red
(’yellowred’), or from red through orange to red (’redyellow’).

n Number of colors to generate.

Examples

lims <- seq(-1, 1, length.out = 21)

ColorBar(lims, color_fun = clim.palette('redyellow'))

cols <- clim.colors(20)
ColorBar(lims, cols)

Cluster K-means Clustering

Description

Compute cluster centers and their time series of occurrences, with the K-means clustering method
using Euclidean distance, of an array of input data with any number of dimensions that at least
contain time_dim. Specifically, it partitions the array along time axis in K groups or clusters in
which each space vector/array belongs to (i.e., is a member of) the cluster with the nearest center
or centroid. This function is a wrapper of kmeans() and relies on the NbClust package (Charrad et
al., 2014 JSS) to determine the optimal number of clusters used for K-means clustering if it is not
provided by users.

Cluster 23

Usage

Cluster(
data,
weights = NULL,
time_dim = "sdate",
space_dim = NULL,
nclusters = NULL,
index = "sdindex",
ncores = NULL

)

Arguments

data A numeric array with named dimensions that at least have ’time_dim’ cor-
responding to time and ’space_dim’ (optional) corresponding to either area-
averages over a series of domains or the grid points for any sptial grid structure.

weights A numeric array with named dimension of multiplicative weights based on the
areas covering each domain/region or grid-cell of ’data’. The dimensions must
be equal to the ’space_dim’ in ’data’. The default value is NULL which means
no weighting is applied.

time_dim A character string indicating the name of time dimension in ’data’. The default
value is ’sdate’.

space_dim A character vector indicating the names of spatial dimensions in ’data’. The
default value is NULL.

nclusters A positive integer K that must be bigger than 1 indicating the number of clusters
to be computed, or K initial cluster centers to be used in the method. The default
value is NULL, which means that the number of clusters will be determined by
NbClust(). The parameter ’index’ therefore needs to be specified for NbClust()
to find the optimal number of clusters to be used for K-means clustering calcu-
lation.

index A character string of the validity index from NbClust package that can be used
to determine optimal K if K is not specified with ’nclusters’. The default value
is ’sdindex’ (Halkidi et al. 2001, JIIS). Other indices available in NBClust are
"kl", "ch", "hartigan", "ccc", "scott", "marriot", "trcovw", "tracew", "friedman",
"rubin", "cindex", "db", "silhouette", "duda", "pseudot2", "beale", "ratkowsky",
"ball", "ptbiserial", "gap", "frey", "mcclain", "gamma", "gplus", "tau", "dunn",
"hubert", "sdindex", and "sdbw". One can also use all of them with the option
’alllong’ or almost all indices clusters K is detremined by the majority rule (the
maximum of histogram of the results of all indices with finite solutions). Use
of some indices on a big and/or unstructured dataset can be computationally
intense and/or could lead to numerical singularity.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing:

24 Cluster

$cluster An integer array of the occurrence of a cluster along time, i.e., when certain data
member in time is allocated to a specific cluster. The dimensions are same as
’data’ without ’space_dim’.

$centers A nemeric array of cluster centres or centroids (e.g. [1:K, 1:spatial degrees
of freedom]). The rest dimensions are same as ’data’ except ’time_dim’ and
’space_dim’.

$totss A numeric array of the total sum of squares. The dimensions are same as ’data’
except ’time_dim’ and ’space_dim’.

$withinss A numeric array of within-cluster sum of squares, one component per cluster.
The first dimenion is the number of cluster, and the rest dimensions are same as
’data’ except ’time_dim’ and ’space_dim’.

$tot.withinss A numeric array of the total within-cluster sum of squares, i.e., sum(withinss).
The dimensions are same as ’data’ except ’time_dim’ and ’space_dim’.

$betweenss A numeric array of the between-cluster sum of squares, i.e. totss-tot.withinss.
The dimensions are same as ’data’ except ’time_dim’ and ’space_dim’.

$size A numeric array of the number of points in each cluster. The first dimenion is the
number of cluster, and the rest dimensions are same as ’data’ except ’time_dim’
and ’space_dim’.

$iter A numeric array of the number of (outer) iterations. The dimensions are same
as ’data’ except ’time_dim’ and ’space_dim’.

$ifault A numeric array of an indicator of a possible algorithm problem. The dimen-
sions are same as ’data’ except ’time_dim’ and ’space_dim’.

References

Wilks, 2011, Statistical Methods in the Atmospheric Sciences, 3rd ed., Elsevire, pp 676.

Examples

Generating synthetic data
a1 <- array(dim = c(200, 4))
mean1 <- 0
sd1 <- 0.3

c0 <- seq(1, 200)
c1 <- sort(sample(x = 1:200, size = sample(x = 50:150, size = 1), replace = FALSE))
x1 <- c(1, 1, 1, 1)
for (i1 in c1) {
a1[i1,] <- x1 + rnorm(4, mean = mean1, sd = sd1)

}

c1p5 <- c0[!(c0 %in% c1)]
c2 <- c1p5[seq(1, length(c1p5), 2)]
x2 <- c(2, 2, 4, 4)
for (i2 in c2) {
a1[i2,] <- x2 + rnorm(4, mean = mean1, sd = sd1)

}

ColorBar 25

c3 <- c1p5[seq(2, length(c1p5), 2)]
x3 <- c(3, 3, 1, 1)
for (i3 in c3) {
a1[i3,] <- x3 + rnorm(4, mean = mean1, sd = sd1)

}

Computing the clusters
names(dim(a1)) <- c('sdate', 'space')
res1 <- Cluster(data = a1, weights = array(1, dim = dim(a1)[2]), nclusters = 3)
res2 <- Cluster(data = a1, weights = array(1, dim = dim(a1)[2]))

ColorBar Draws a Color Bar

Description

Generates a color bar to use as colouring function for map plots and optionally draws it (horizon-
tally or vertically) to be added to map multipanels or plots. It is possible to draw triangles at the
ends of the colour bar to represent values that go beyond the range of interest. A number of options
is provided to adjust the colours and the position and size of the components. The drawn colour bar
spans a whole figure region and is compatible with figure layouts.

The generated colour bar consists of a set of breaks that define the length(brks) - 1 intervals to
classify each of the values in each of the grid cells of a two-dimensional field. The corresponding
grid cell of a given value of the field will be coloured in function of the interval it belongs to.

The only mandatory parameters are ’var_limits’ or ’brks’ (in its second format, see below).

Usage

ColorBar(
brks = NULL,
cols = NULL,
vertical = TRUE,
subsampleg = NULL,
bar_limits = NULL,
var_limits = NULL,
triangle_ends = NULL,
col_inf = NULL,
col_sup = NULL,
color_fun = clim.palette(),
plot = TRUE,
draw_ticks = TRUE,
draw_separators = FALSE,
triangle_ends_scale = 1,
extra_labels = NULL,
title = NULL,

26 ColorBar

title_scale = 1,
label_scale = 1,
tick_scale = 1,
extra_margin = rep(0, 4),
label_digits = 4,
...

)

Arguments

brks Can be provided in two formats:

• A single value with the number of breaks to be generated automatically,
between the minimum and maximum specified in ’var_limits’ (both inclu-
sive). Hence the parameter ’var_limits’ is mandatory if ’brks’ is provided
with this format. If ’bar_limits’ is additionally provided, values only be-
tween ’bar_limits’ will be generated. The higher the value of ’brks’, the
smoother the plot will look.

• A vector with the actual values of the desired breaks. Values will be re-
ordered by force to ascending order. If provided in this format, no other
parameters are required to generate/plot the colour bar.

This parameter is optional if ’var_limits’ is specified. If ’brks’ not specified but
’cols’ is specified, it will take as value length(cols) + 1. If ’cols’ is not specified
either, ’brks’ will take 21 as value.

cols Vector of length(brks) - 1 valid colour identifiers, for each interval defined by
the breaks. This parameter is optional and will be filled in with a vector of
length(brks) - 1 colours generated with the function provided in ’color_fun’
(clim.colors by default).
’cols’ can have one additional colour at the beginning and/or at the end with
the aim to colour field values beyond the range of interest represented in the
colour bar. If any of these extra colours is provided, parameter ’triangle_ends’
becomes mandatory in order to disambiguate which of the ends the colours have
been provided for.

vertical TRUE/FALSE for vertical/horizontal colour bar (disregarded if plot = FALSE).

subsampleg The first of each subsampleg breaks will be ticked on the colorbar. Takes by
default an approximation of a value that yields a readable tick arrangement (ex-
treme breaks always ticked). If set to 0 or lower, no labels are drawn. See the
code of the function for details or use ’extra_labels’ for customized tick arrange-
ments.

bar_limits Vector of two numeric values with the extremes of the range of values repre-
sented in the colour bar. If ’var_limits’ go beyond this interval, the drawing of
triangle extremes is triggered at the corresponding sides, painted in ’col_inf’
and ’col_sup’. Either of them can be set as NA and will then take as value the
corresponding extreme in ’var_limits’ (hence a triangle end won’t be triggered
for these sides). Takes as default the extremes of ’brks’ if available, else the
same values as ’var_limits’.

var_limits Vector of two numeric values with the minimum and maximum values of the
field to represent. These are used to know whether to draw triangle ends at the

ColorBar 27

extremes of the colour bar and what colour to fill them in with. If not specified,
take the same value as the extremes of ’brks’. Hence the parameter ’brks’ is
mandatory if ’var_limits’ is not specified.

triangle_ends Vector of two logical elements, indicating whether to force the drawing of tri-
angle ends at each of the extremes of the colour bar. This choice is automat-
ically made from the provided ’brks’, ’bar_limits’, ’var_limits’, ’col_inf’ and
’col_sup’, but the behaviour can be manually forced to draw or not to draw the
triangle ends with this parameter. If ’cols’ is provided, ’col_inf’ and ’col_sup’
will take priority over ’triangle_ends’ when deciding whether to draw the trian-
gle ends or not.

col_inf Colour to fill the inferior triangle end with. Useful if specifying colours man-
ually with parameter ’cols’, to specify the colour and to trigger the drawing of
the lower extreme triangle, or if ’cols’ is not specified, to replace the colour
automatically generated by ColorBar().

col_sup Colour to fill the superior triangle end with. Useful if specifying colours man-
ually with parameter ’cols’, to specify the colour and to trigger the drawing of
the upper extreme triangle, or if ’cols’ is not specified, to replace the colour
automatically generated by ColorBar().

color_fun Function to generate the colours of the color bar. Must take an integer and
must return as many colours. The returned colour vector can have the attribute
’na_color’, with a colour to draw NA values. This parameter is set by default to
clim.palette().

plot Logical value indicating whether to only compute its breaks and colours (FALSE)
or to also draw it on the current device (TRUE).

draw_ticks Whether to draw ticks for the labels along the colour bar (TRUE) or not (FALSE).
TRUE by default. Disregarded if ’plot = FALSE’.

draw_separators

Whether to draw black lines in the borders of each of the colour rectancles of
the colour bar (TRUE) or not (FALSE). FALSE by default. Disregarded if ’plot
= FALSE’.

triangle_ends_scale

Scale factor for the drawn triangle ends of the colour bar, if drawn at all. Takes
1 by default (rectangle triangle proportional to the thickness of the colour bar).
Disregarded if ’plot = FALSE’.

extra_labels Numeric vector of extra labels to draw along axis of the colour bar. The number
of provided decimals will be conserved. Disregarded if ’plot = FALSE’.

title Title to draw on top of the colour bar, most commonly with the units of the
represented field in the neighbour figures. Empty by default.

title_scale Scale factor for the ’title’ of the colour bar. Takes 1 by default.

label_scale Scale factor for the labels of the colour bar. Takes 1 by default.

tick_scale Scale factor for the length of the ticks of the labels along the colour bar. Takes
1 by default.

extra_margin Extra margins to be added around the colour bar, in the format c(y1, x1, y2, x2).
The units are margin lines. Takes rep(0, 4) by default.

28 Composite

label_digits Number of significant digits to be displayed in the labels of the colour bar, usu-
ally to avoid too many decimal digits overflowing the figure region. This does
not have effect over the labels provided in ’extra_labels’. Takes 4 by default.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.lab cex.main cex.sub cin col.axis col.lab col.main col.sub
cra crt csi cxy err family fg fig fin font font.axis font.lab font.main font.sub lend
lheight ljoin lmitre lty lwd mai mex mfcol mfrow mfg mkh oma omd omi page
pch pin plt pty smo srt tck tcl usr xaxp xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias
ylog.
For more information about the parameters see ‘par‘.

Value

brks Breaks used for splitting the range in intervals.

cols Colours generated for each of the length(brks) - 1 intervals. Always of length
length(brks) - 1.

col_inf Colour used to draw the lower triangle end in the colour bar (NULL if not drawn
at all).

col_sup Colour used to draw the upper triangle end in the colour bar (NULL if not drawn
at all).

Examples

cols <- c("dodgerblue4", "dodgerblue1", "forestgreen", "yellowgreen", "white",
"white", "yellow", "orange", "red", "saddlebrown")

lims <- seq(-1, 1, 0.2)
ColorBar(lims, cols)

Composite Compute composites

Description

Composite a multi-dimensional array which contains two spatial and one temporal dimensions, e.g.,
(lon, lat, time), according to the indices of mode/cluster occurrences in time. The p-value by t-test
is also computed.

Usage

Composite(
data,
occ,
time_dim = "time",
space_dim = c("lon", "lat"),
lag = 0,

Composite 29

eno = FALSE,
K = NULL,
fileout = NULL,
ncores = NULL

)

Arguments

data A numeric array containing two spatial and one temporal dimensions.

occ A vector of the occurrence time series of mode(s)/cluster(s). The length should
be the same as the temporal dimension in ’data’. (*1) When one wants to com-
posite all modes, e.g., all K = 3 clusters then for example occurrences could look
like: 1 1 2 3 2 3 1 3 3 2 3 2 2 3 2. (*2) Otherwise for compositing only the 2nd
mode or cluster of the above example occurrences should look like 0 0 1 0 1 0 0
0 0 1 0 1 1 0 1.

time_dim A character string indicating the name of the temporal dimension in ’data’. The
default value is ’time’.

space_dim A character vector indicating the names of the spatial dimensions in ’data’. The
default value is c(’lon’, ’lat’).

lag An integer indicating the lag time step. E.g., for lag = 2, +2 occurrences will be
used (i.e., shifted 2 time steps forward). The default value is 0.

eno A logical value indicating whether to use the effective sample size (TRUE) or
the total sample size (FALSE) for the number of degrees of freedom. The default
value is FALSE.

K A numeric value indicating the maximum number of composites. The default
value is NULL, which means the maximum value provided in ’occ’ is used.

fileout A character string indicating the name of the .sav output file The default value
is NULL, which means not to save the output.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing:

$composite A numeric array of the spatial dimensions and new dimension ’K’ first, followed
by the same dimensions as parameter ’data’. The length of dimension ’K’ is
parameter ’K’.

$p.val A numeric array with the same dimension as $composite. It is the p-value of the
composites obtained through a t-test that accounts for the serial dependence of
the data.

Examples

blank <- array(0, dim = c(20, 10, 30))
x1 <- blank
t1 <- blank

30 ConfigApplyMatchingEntries

f1 <- blank

for (i in 1:20) {
x1[i, ,] <- i

}

for (i in 1:30) {
t1[, , i] <- i

}

This is 2D propagating sin wave example, where we use f1(lon, lat, time)
wave field. Compositing (like using stroboscopicc light) at different
time steps can lead to modification or cancelation of wave pattern.

for (i in 1:20) {
for (j in 1:30) {
f1[i, , j] <- 3 * sin(2 * pi * x1[i, , j] / 5. - 2 * pi * t1[i, , j] / 6.)

}
}
names(dim(f1)) <- c('lon', 'lat', 'time')
occ <- rep(0, 30)
occ[c(2, 5, 8, 11, 14, 17, 20, 23)] <- 1
res <- Composite(data = f1, occ = occ)
filled.contour(res$composite[, , 1])

occ <- rep(0, 30)
occ[c(3, 9, 15, 21)] <- 1
res <- Composite(data = f1, occ = occ)
filled.contour(res$composite[, , 1])

Example with one missing composite in occ:
data <- 1:(4 * 5 * 6)
dim(data) <- c(lon = 4, lat = 5, case = 6)
occ <- c(1, 1, 2, 2, 3, 3)
res <- Composite(data, occ, time_dim = 'case', K = 4)

ConfigApplyMatchingEntries

Apply Matching Entries To Dataset Name And Variable Name To Find
Related Info

Description

Given a pair of dataset name and variable name, this function determines applies all the matching
entries found in the corresponding configuration table to work out the dataset main path, file path,
actual name of variable inside NetCDF files, ...

ConfigApplyMatchingEntries 31

Usage

ConfigApplyMatchingEntries(
configuration,
var,
exp = NULL,
obs = NULL,
show_entries = FALSE,
show_result = TRUE

)

Arguments

configuration Configuration object obtained from ConfigFileOpen() or ConfigFileCreate().

var Name of the variable to load. Will be interpreted as a string, regular expressions
do not apply here. Examples: ’tas’ or ’tasmax_q90’.

exp Set of experimental dataset identifiers. Will be interpreted as a strings, regu-
lar expressions do not apply here. Can be NULL (not to check in experimental
dataset tables), and takes by default NULL. Examples: c(’EnsEcmwfSeas’, ’En-
sUkmoSeas’), c(’i00k’).

obs Set of observational dataset identifiers. Will be interpreted as a strings, reg-
ular expressions do not apply here. Can be NULL (not to check in observa-
tional dataset tables), and takes by default NULL. Examples: c(’GLORYS’,
’ERAint’), c(’NCEP’).

show_entries Flag to stipulate whether to show the found matching entries for all datasets and
variable name.

show_result Flag to stipulate whether to show the result of applying all the matching entries
(dataset main path, file path, ...).

Value

A list with the information resulting of applying the matching entries is returned.

See Also

ConfigApplyMatchingEntries, ConfigEditDefinition, ConfigEditEntry, ConfigFileOpen, ConfigShowSim-
ilarEntries, ConfigShowTable

Examples

Create an empty configuration file
config_file <- paste0(tempdir(), "/example.conf")
s2dv::ConfigFileCreate(config_file, confirm = FALSE)
Open it into a configuration object
configuration <- ConfigFileOpen(config_file)
Add an entry at the bottom of 4th level of file-per-startdate experiments
table which will associate the experiment "ExampleExperiment2" and variable
"ExampleVariable" to some information about its location.
configuration <- ConfigAddEntry(configuration, "experiments",

32 ConfigEditDefinition

"last", "ExampleExperiment2", "ExampleVariable",
"/path/to/ExampleExperiment2/",
"ExampleVariable/ExampleVariable_$START_DATE$.nc")

Edit entry to generalize for any variable. Changing variable needs .
configuration <- ConfigEditEntry(configuration, "experiments", 1,

var_name = ".*",
file_path = "VAR_NAME/VAR_NAME_$START_DATE$.nc")

Now apply matching entries for variable and experiment name and show the
result
match_info <- ConfigApplyMatchingEntries(configuration, 'tas',

exp = c('ExampleExperiment2'), show_result = TRUE)

ConfigEditDefinition Add Modify Or Remove Variable Definitions In Configuration

Description

These functions help in adding, modifying or removing variable definitions in a configuration ob-
ject obtained with ConfigFileOpen or ConfigFileCreate. ConfigEditDefinition() will add the
definition if not existing.

Usage

ConfigEditDefinition(configuration, name, value, confirm = TRUE)

ConfigRemoveDefinition(configuration, name)

Arguments

configuration Configuration object obtained wit ConfigFileOpen() or ConfigFileCreate().

name Name of the variable to add/modify/remove.

value Value to associate to the variable.

confirm Flag to stipulate whether to ask for confirmation if the variable is being modified.
Takes by default TRUE.

Value

A modified configuration object is returned.

See Also

[ConfigApplyMatchingEntries()], [ConfigEditDefinition()], [ConfigEditEntry()], [ConfigFileOpen()],
[ConfigShowSimilarEntries()], [ConfigShowTable()].

ConfigEditEntry 33

Examples

Create an empty configuration file
config_file <- paste0(tempdir(), "/example.conf")
ConfigFileCreate(config_file, confirm = FALSE)
Open it into a configuration object
configuration <- ConfigFileOpen(config_file)
Add an entry at the bottom of 4th level of file-per-startdate experiments
table which will associate the experiment "ExampleExperiment2" and variable
"ExampleVariable" to some information about its location.
configuration <- ConfigAddEntry(configuration, "experiments",

"last", "ExampleExperiment2", "ExampleVariable",
"/path/to/ExampleExperiment2/",
"ExampleVariable/ExampleVariable_$START_DATE$.nc")

Edit entry to generalize for any variable. Changing variable needs .
configuration <- ConfigEditEntry(configuration, "experiments", 1,

var_name = ".*",
file_path = "VAR_NAME/VAR_NAME_$START_DATE$.nc")

Now apply matching entries for variable and experiment name and show the
result
match_info <- ConfigApplyMatchingEntries(configuration, 'tas',

exp = c('ExampleExperiment2'), show_result = TRUE)

ConfigEditEntry Add, Remove Or Edit Entries In The Configuration

Description

ConfigAddEntry(), ConfigEditEntry() and ConfigRemoveEntry() are functions to manage entries in
a configuration object created with ConfigFileOpen().
Before adding an entry, make sure the defaults don’t do already what you want (ConfigShowDefi-
nitions(), ConfigShowTable()).
Before adding an entry, make sure it doesn’t override and spoil what other entries do (ConfigShowTable(),
ConfigFileOpen()).
Before adding an entry, make sure there aren’t other entries that already do what you want (Con-
figShowSimilarEntries()).

Usage

ConfigEditEntry(
configuration,
dataset_type,
position,
dataset_name = NULL,
var_name = NULL,
main_path = NULL,
file_path = NULL,
nc_var_name = NULL,

34 ConfigEditEntry

suffix = NULL,
varmin = NULL,
varmax = NULL

)

ConfigAddEntry(
configuration,
dataset_type,
position = "last",
dataset_name = ".*",
var_name = ".*",
main_path = "*",
file_path = "*",
nc_var_name = "*",
suffix = "*",
varmin = "*",
varmax = "*"

)

ConfigRemoveEntry(
configuration,
dataset_type,
dataset_name = NULL,
var_name = NULL,
position = NULL

)

Arguments

configuration Configuration object obtained via ConfigFileOpen() or ConfigFileCreate() that
will be modified accordingly.

dataset_type Whether to modify a table of experimental datasets or a table of observational
datasets. Can take values ’experiments’ or ’observations’ respectively.

position ’position’ tells the index in the table of the entry to edit or remove. Use Con-
figShowTable() to see the index of the entry. In ConfigAddEntry() it can also
take the value "last" (default), that will put the entry at the end of the corre-
sponding level, or "first" at the beginning. See ?ConfigFileOpen for more infor-
mation. If ’dataset_name’ and ’var_name’ are specified this argument is ignored
in ConfigRemoveEntry().

dataset_name, var_name, main_path, file_path, nc_var_name, suffix, varmin, varmax

These parameters tell the dataset name, variable name, main path, ..., of the en-
try to add, edit or remove.
’dataset_name’ and ’var_name’ can take as a value a POSIX 1003.2 regular ex-
pression (see ?ConfigFileOpen).
Other parameters can take as a value a shell globbing expression (see ?Config-
FileOpen).
’dataset_name’ and ’var_name’ take by default the regular expression ’.*’ (match
any dataset and variable name), and the others take by default ’*’ (associate to

ConfigEditEntry 35

the pair ’dataset_name’ and ’var_name’ all the defined default values. In this
case ’*’ has a special behaviour, it won’t be used as a shell globbing expression.
See ?ConfigFileOpen and ?ConfigShowDefinitions).
’var_min’ and ’var_max’ must be a character string.
To define these values, you can use defined variables via $VARIABLE_NAME$
or other entry attributes via $ATTRIBUTE_NAME$. See ?ConfigFileOpen for
more information.

Value

The function returns an accordingly modified configuration object. To apply the changes in the
configuration file it must be saved using ConfigFileSave().

See Also

ConfigApplyMatchingEntries, ConfigEditDefinition, ConfigEditEntry, ConfigFileOpen, ConfigShowSim-
ilarEntries, ConfigShowTable

Examples

Create an empty configuration file
config_file <- paste0(tempdir(), "/example.conf")
ConfigFileCreate(config_file, confirm = FALSE)
Open it into a configuration object
configuration <- ConfigFileOpen(config_file)
Add an entry at the bottom of 4th level of file-per-startdate experiments
table which will associate the experiment "ExampleExperiment" and variable
"ExampleVariable" to some information about its location.
configuration <- ConfigAddEntry(configuration, "experiments",

"last", "ExampleExperiment", "ExampleVariable",
"/path/to/ExampleExperiment/",
"ExampleVariable/ExampleVariable_$START_DATE$.nc")

Add another entry
configuration <- ConfigAddEntry(configuration, "experiments",

"last", "ExampleExperiment2", "ExampleVariable",
"/path/to/ExampleExperiment2/",
"ExampleVariable/ExampleVariable_$START_DATE$.nc")

Edit second entry to generalize for any variable. Changing variable needs .
configuration <- ConfigEditEntry(configuration, "experiments", 2,

var_name = ".*",
file_path = "VAR_NAME/VAR_NAME_$START_DATE$.nc")

Remove first entry
configuration <- ConfigRemoveEntry(configuration, "experiments",

"ExampleExperiment", "ExampleVariable")
Show results
ConfigShowTable(configuration, "experiments")
Save the configuration
ConfigFileSave(configuration, config_file, confirm = FALSE)

36 ConfigFileOpen

ConfigFileOpen Functions To Create Open And Save Configuration File

Description

These functions help in creating, opening and saving configuration files.

Usage

ConfigFileOpen(file_path, silent = FALSE, stop = FALSE)

ConfigFileCreate(file_path, confirm = TRUE)

ConfigFileSave(configuration, file_path, confirm = TRUE)

Arguments

file_path Path to the configuration file to create/open/save.

silent Flag to activate or deactivate verbose mode. Defaults to FALSE (verbose mode
on).

stop TRUE/FALSE whether to raise an error if not all the mandatory default variables
are defined in the configuration file.

confirm Flag to stipulate whether to ask for confirmation when saving a configuration
file that already exists.
Defaults to TRUE (confirmation asked).

configuration Configuration object to save in a file.

Details

ConfigFileOpen() loads all the data contained in the configuration file specified as parameter ’file_path’.
Returns a configuration object with the variables needed for the configuration file mechanism to
work. This function is called from inside the Load() function to load the configuration file specified
in ’configfile’.

ConfigFileCreate() creates an empty configuration file and saves it to the specified path. It may
be opened later with ConfigFileOpen() to be edited. Some default values are set when creating a
file with this function, you can check these with ConfigShowDefinitions().

ConfigFileSave() saves a configuration object into a file, which may then be used from Load().

Two examples of configuration files can be found inside the ’inst/config/’ folder in the package:

• BSC.conf: configuration file used at BSC-CNS. Contains location data on several datasets and
variables.

• template.conf: very simple configuration file intended to be used as pattern when starting from
scratch.

ConfigFileOpen 37

How the configuration file works:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It contains one list and two tables.
Each of these have a header that starts with ’!!’. These are key lines and should not be removed or
reordered.
Lines starting with ’#’ and blank lines will be ignored. The list should contains variable definitions
and default value definitions.
The first table contains information about experiments.
The third table contains information about observations.
Each table entry is a list of comma-separated elements.
The two first are part of a key that is associated to a value formed by the other elements.
The key elements are a dataset identifier and a variable name.
The value elements are the dataset main path, dataset file path, the variable name inside the .nc file,
a default suffix (explained below) and a minimum and maximum vaues beyond which loaded data
is deactivated.
Given a dataset name and a variable name, a full path is obtained concatenating the main path and
the file path.
Also the nc variable name, the suffixes and the limit values are obtained.
Any of the elements in the keys can contain regular expressions[1] that will cause matching for sets
of dataset names or variable names.
The dataset path and file path can contain shell globbing expressions[2] that will cause matching
for sets of paths when fetching the file in the full path.
The full path can point to an OPeNDAP URL.
Any of the elements in the value can contain variables that will be replaced to an associated string.
Variables can be defined only in the list at the top of the file.
The pattern of a variable definition is
VARIABLE_NAME = VARIABLE_VALUE
and can be accessed from within the table values or from within the variable values as
$VARIABLE_NAME$
For example:
FILE_NAME = tos.nc
!!table of experiments
ecmwf, tos, /path/to/dataset/, $FILE_NAME$
There are some reserved variables that will offer information about the store frequency, the current
startdate Load() is fetching, etc:
$VAR_NAME$, $START_DATE$, $STORE_FREQ$, $MEMBER_NUMBER$
for experiments only: $EXP_NAME$
for observations only: $OBS_NAME$, $YEAR$, $MONTH$, $DAY$
Additionally, from an element in an entry value you can access the other elements of the entry as:
$EXP_MAIN_PATH$, $EXP_FILE_PATH$,
$VAR_NAME$, $SUFFIX$, $VAR_MIN$, $VAR_MAX$

The variable $SUFFIX$ is useful because it can be used to take part in the main or file path. For
example: ’/path/to$SUFFIX$/dataset/’.
It will be replaced by the value in the column that corresponds to the suffix unless the user specifies
a different suffix via the parameter ’suffixexp’ or ’suffixobs’.
This way the user is able to load two variables with the same name in the same dataset but with
slight modifications, with a suffix anywhere in the path to the data that advices of this slight modi-



38 ConfigFileOpen

fication.

The entries in a table will be grouped in 4 levels of specificity:

1. General entries:
- the key dataset name and variable name are both a regular expression matching any sequence
of characters (.*) that will cause matching for any pair of dataset and variable names
Example: .*, .*, /dataset/main/path/, file/path, nc_var_name, suffix, var_min, var_max

2. Dataset entries:
- the key variable name matches any sequence of characters
Example: ecmwf, .*, /dataset/main/path/, file/path, nc_var_name, suffix, var_min, var_max

3. Variable entries:
- the key dataset name matches any sequence of characters
Example: .*, tos, /dataset/main/path/, file/path, nc_var_name, suffix, var_min, var_max

4. Specific entries:
- both key values are specified
Example: ecmwf, tos, /dataset/main/path/, file/path, nc_var_name, suffix, var_min, var_max

Given a pair of dataset name and variable name for which we want to know the full path, all the
rules that match will be applied from more general to more specific.
If there is more than one entry per group that match a given key pair, these will be applied in the
order of appearance in the configuration file (top to bottom).

An asterisk (*) in any value element will be interpreted as ’leave it as is or take the default value if
yet not defined’.
The default values are defined in the following reserved variables:
$DEFAULT_EXP_MAIN_PATH$, $DEFAULT_EXP_FILE_PATH$, $DEFAULT_NC_VAR_NAME$,
$DEFAULT_OBS_MAIN_PATH$, $DEFAULT_OBS_FILE_PATH$, $DEFAULT_SUFFIX$, $DE-
FAULT_VAR_MIN$, $DEFAULT_VAR_MAX$,
$DEFAULT_DIM_NAME_LATITUDES$, $DEFAULT_DIM_NAME_LONGITUDES$,
$DEFAULT_DIM_NAME_MEMBERS$

Trailing asterisks in an entry are not mandatory. For example
ecmwf, .*, /dataset/main/path/, *, *, *, *, *
will have the same effect as
ecmwf, .*, /dataset/main/path/

A double quote only (") in any key or value element will be interpreted as ’fill in with the same
value as the entry above’.

Value

ConfigFileOpen() returns a configuration object with all the information for the configuration file
mechanism to work.
ConfigFileSave() returns TRUE if the file has been saved and FALSE otherwise.
ConfigFileCreate() returns nothing.



ConfigShowSimilarEntries 39

References

[1] https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
[2] https://tldp.org/LDP/abs/html/globbingref.html

See Also

ConfigApplyMatchingEntries, ConfigEditDefinition, ConfigEditEntry, ConfigFileOpen, ConfigShowSim-
ilarEntries, ConfigShowTable

Examples

# Create an empty configuration file
config_file <- paste0(tempdir(), "/example.conf")
ConfigFileCreate(config_file, confirm = FALSE)
# Open it into a configuration object
configuration <- ConfigFileOpen(config_file)
# Add an entry at the bottom of 4th level of file-per-startdate experiments
# table which will associate the experiment "ExampleExperiment2" and variable
# "ExampleVariable" to some information about its location.
configuration <- ConfigAddEntry(configuration, "experiments",

"last", "ExampleExperiment2", "ExampleVariable",
"/path/to/ExampleExperiment2/",
"ExampleVariable/ExampleVariable_$START_DATE$.nc")

# Edit entry to generalize for any variable. Changing variable needs .
configuration <- ConfigEditEntry(configuration, "experiments", 1,

var_name = ".*",
file_path = "$VAR_NAME$/$VAR_NAME$_$START_DATE$.nc")

# Now apply matching entries for variable and experiment name and show the
# result
match_info <- ConfigApplyMatchingEntries(configuration, 'tas',

exp = c('ExampleExperiment2'), show_result = TRUE)
# Finally save the configuration file.
ConfigFileSave(configuration, config_file, confirm = FALSE)

ConfigShowSimilarEntries

Find Similar Entries In Tables Of Datasets

Description

These functions help in finding similar entries in tables of supported datasets by comparing all
entries with some given information.
This is useful when dealing with complex configuration files and not sure if already support certain
variables or datasets.
At least one field must be provided in ConfigShowSimilarEntries(). Other fields can be unspecified
and won’t be taken into account. If more than one field is provided, sameness is avreaged over all
provided fields and entries are sorted from higher average to lower.

https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
https://tldp.org/LDP/abs/html/globbingref.html


40 ConfigShowSimilarEntries

Usage

ConfigShowSimilarEntries(
configuration,
dataset_name = NULL,
var_name = NULL,
main_path = NULL,
file_path = NULL,
nc_var_name = NULL,
suffix = NULL,
varmin = NULL,
varmax = NULL,
n_results = 10

)

Arguments

configuration Configuration object obtained either from ConfigFileCreate() or ConfigFileOpen().

dataset_name Optional dataset name to look for similars of.

var_name Optional variable name to look for similars of.

main_path Optional main path to look for similars of.

file_path Optional file path to look for similars of.

nc_var_name Optional variable name inside NetCDF file to look for similars of.

suffix Optional suffix to look for similars of.

varmin Optional variable minimum to look for similars of.

varmax Optional variable maximum to look for similars of.

n_results Top ’n_results’ alike results will be shown only. Defaults to 10 in ConfigShowSim-
ilarEntries() and to 5 in ConfigShowSimilarVars().

Details

Sameness is calculated with string distances as specified by Simon White in [1].

Value

These functions return information about the found matches.

References

[1] Simon White, string seamness: http://www.catalysoft.com/articles/StrikeAMatch.html

See Also

ConfigApplyMatchingEntries, ConfigEditDefinition, ConfigEditEntry, ConfigFileOpen, ConfigShowSim-
ilarEntries, ConfigShowTable

http://www.catalysoft.com/articles/StrikeAMatch.html


ConfigShowTable 41

Examples

# Create an empty configuration file
config_file <- paste0(tempdir(), "/example.conf")
ConfigFileCreate(config_file, confirm = FALSE)
# Open it into a configuration object
configuration <- ConfigFileOpen(config_file)
# Add an entry at the bottom of 4th level of file-per-startdate experiments
# table which will associate the experiment "ExampleExperiment2" and variable
# "ExampleVariable" to some information about its location.
configuration <- ConfigAddEntry(configuration, "experiments", "last",

"ExampleExperiment2", "ExampleVariable",
"/path/to/ExampleExperiment2/",
"ExampleVariable/ExampleVariable_$START_DATE$.nc")

# Edit entry to generalize for any variable. Changing variable needs .
configuration <- ConfigEditEntry(configuration, "experiments", 1,

var_name = "Var.*",
file_path = "$VAR_NAME$/$VAR_NAME$_$START_DATE$.nc")

# Look for similar entries
ConfigShowSimilarEntries(configuration, dataset_name = "Exper",

var_name = "Vari")

ConfigShowTable Show Configuration Tables And Definitions

Description

These functions show the tables of supported datasets and definitions in a configuration object
obtained via ConfigFileCreate() or ConfigFileOpen().

Usage

ConfigShowTable(configuration, dataset_type, line_numbers = NULL)

ConfigShowDefinitions(configuration)

Arguments

configuration Configuration object obtained from ConfigFileCreate() or ConfigFileOpen().

dataset_type In ConfigShowTable(), ’dataset_type’ tells whether the table to show is of ex-
perimental datasets or of observational datasets. Can take values ’experiments’
or ’observations’.

line_numbers ’line_numbers’ is an optional vector of numbers as long as the number of entries
in the specified table. Intended for internal use.

Value

These functions return nothing.



42 Consist_Trend

See Also

[ConfigApplyMatchingEntries()], [ConfigEditDefinition()], [ConfigEditEntry()], [ConfigFileOpen()],
[ConfigShowSimilarEntries()], [ConfigShowTable()].

Examples

# Create an empty configuration file
config_file <- paste0(tempdir(), "/example.conf")
ConfigFileCreate(config_file, confirm = FALSE)
# Open it into a configuration object
configuration <- ConfigFileOpen(config_file)
# Add an entry at the bottom of 4th level of file-per-startdate experiments
# table which will associate the experiment "ExampleExperiment2" and variable
# "ExampleVariable" to some information about its location.
configuration <- ConfigAddEntry(configuration, "experiments", "last",

"ExampleExperiment2", "ExampleVariable",
"/path/to/ExampleExperiment2/",
"ExampleVariable/ExampleVariable_$START_DATE$.nc")

# Edit entry to generalize for any variable. Changing variable needs .
configuration <- ConfigEditEntry(configuration, "experiments", 1,

var_name = ".*",
file_path = "$VAR_NAME$/$VAR_NAME$_$START_DATE$.nc")

# Show tables, lists and definitions
ConfigShowTable(configuration, 'experiments')
ConfigShowDefinitions(configuration)

Consist_Trend Compute trend using only model data for which observations are
available

Description

Compute the linear trend for a time series by least square fitting together with the associated error
interval for both the observational and model data. The 95% confidence interval and detrended
observational and model data are also provided.
The function doesn’t do the ensemble mean, so if the input data have the member dimension, en-
semble mean needs to be computed beforehand.

Usage

Consist_Trend(
exp,
obs,
dat_dim = "dataset",
time_dim = "sdate",
interval = 1,
ncores = NULL

)



Consist_Trend 43

Arguments

exp A named numeric array of experimental data, with at least two dimensions
’time_dim’ and ’dat_dim’.

obs A named numeric array of observational data, same dimensions as parameter
’exp’ except along ’dat_dim’.

dat_dim A character string indicating the name of the dataset dimensions. If data at some
point of ’time_dim’ are not complete along ’dat_dim’ in both ’exp’ and ’obs’,
this point in all ’dat_dim’ will be discarded. The default value is ’dataset’.

time_dim A character string indicating the name of dimension along which the trend is
computed. The default value is ’sdate’.

interval A positive numeric indicating the unit length between two points along ’time_dim’
dimension. The default value is 1.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing:

$trend A numeric array of the trend coefficients of model and observational data with
dimensions c(stats = 2, nexp + nobs, the rest dimensions of ’exp’ and ’obs’
except time_dim), where ’nexp’ is the length of ’dat_dim’ in ’exp’ and ’nobs’ is
the length of ’dat_dim’ in ’obs. The ’stats’ dimension contains the intercept and
the slope.

$conf.lower A numeric array of the lower limit of 95% confidence interval with dimensions
same as $trend. The ’stats’ dimension contains the lower confidence level of the
intercept and the slope.

$conf.upper A numeric array of the upper limit of 95% confidence interval with dimensions
same as $trend. The ’stats’ dimension contains the upper confidence level of the
intercept and the slope.

$detrended_exp A numeric array of the detrended model data with the same dimensions as ’exp’.

$detrended_obs A numeric array of the detrended observational data with the same dimensions
as ’obs’.

Examples

#'# Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
runmean_months <- 12
smooth_ano_exp <- Smoothing(ano_exp, runmeanlen = runmean_months)
smooth_ano_obs <- Smoothing(ano_obs, runmeanlen = runmean_months)
dim_to_mean <- 'member' # average along members
years_between_startdates <- 5
trend <- Consist_Trend(MeanDims(smooth_ano_exp, dim_to_mean, na.rm = TRUE),



44 Corr

MeanDims(smooth_ano_obs, dim_to_mean, na.rm = TRUE),
interval = years_between_startdates)

#Bind data for plotting
trend_bind <- abind::abind(trend$conf.lower[2, , ], trend$trend[2, , ],

trend$conf.upper[2, , ], trend$trend[1, , ], along = 0)
trend_bind <- Reorder(trend_bind, c(2, 1, 3))

PlotVsLTime(trend_bind, toptitle = "trend", ytitle = "K/(5 years)",
monini = 11, limits = c(-0.8, 0.8), listexp = c('CMIP5 IC3'),
listobs = c('ERSST'), biglab = FALSE, hlines = c(0))

PlotAno(InsertDim(trend$detrended_exp, 2, 1), InsertDim(trend$detrended_obs, 2, 1),
startDates, "Detrended tos anomalies", ytitle = 'K',
legends = 'ERSST', biglab = FALSE)

Corr Compute the correlation coefficient between an array of forecast and
their corresponding observation

Description

Calculate the correlation coefficient (Pearson, Kendall or Spearman) for an array of forecast and an
array of observation. The correlations are computed along time_dim, the startdate dimension. If
comp_dim is given, the correlations are computed only if obs along the comp_dim dimension are
complete between limits[1] and limits[2], i.e., there is no NA between limits[1] and limits[2]. This
option can be activated if the user wants to account only for the forecasts which the corresponding
observations are available at all leadtimes.
The confidence interval is computed by the Fisher transformation and the significance level relies
on an one-sided student-T distribution.
If the dataset has more than one member, ensemble mean is necessary necessary before using this
function since it only allows one dimension ’dat_dim’ to have inconsistent length between ’exp’
and ’obs’. If all the dimensions of ’exp’ and ’obs’ are identical, you can simply use apply() and
cor() to compute the correlation.

Usage

Corr(
exp,
obs,
time_dim = "sdate",
dat_dim = "dataset",
comp_dim = NULL,
limits = NULL,
method = "pearson",
memb_dim = NULL,
memb = TRUE,
pval = TRUE,



Corr 45

conf = TRUE,
conf.lev = 0.95,
ncores = NULL

)

Arguments

exp A named numeric array of experimental data, with at least two dimensions
’time_dim’ and ’dat_dim’.

obs A named numeric array of observational data, same dimensions as parameter
’exp’ except along ’dat_dim’ and ’memb_dim’.

time_dim A character string indicating the name of dimension along which the correlations
are computed. The default value is ’sdate’.

dat_dim A character string indicating the name of dataset (nobs/nexp) dimension. The
default value is ’dataset’.

comp_dim A character string indicating the name of dimension along which obs is taken
into account only if it is complete. The default value is NULL.

limits A vector of two integers indicating the range along comp_dim to be completed.
The default is c(1, length(comp_dim dimension)).

method A character string indicating the type of correlation: ’pearson’, ’spearman’, or
’kendall’. The default value is ’pearson’.

memb_dim A character string indicating the name of the member dimension. It must be one
dimension in ’exp’ and ’obs’. If there is no member dimension, set NULL. The
default value is NULL.

memb A logical value indicating whether to remain ’memb_dim’ dimension (TRUE) or
do ensemble mean over ’memb_dim’ (FALSE). Only functional when ’memb_dim’
is not NULL. The default value is TRUE.

pval A logical value indicating whether to compute or not the p-value of the test Ho:
Corr = 0. The default value is TRUE.

conf A logical value indicating whether to retrieve the confidence intervals or not.
The default value is TRUE.

conf.lev A numeric indicating the confidence level for the regression computation. The
default value is 0.95.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing the numeric arrays with dimension:
c(nexp, nobs, exp_memb, obs_memb, all other dimensions of exp except time_dim and memb_dim).
nexp is the number of experiment (i.e., ’dat_dim’ in exp), and nobs is the number of observation
(i.e., ’dat_dim’ in obs). exp_memb is the number of member in experiment (i.e., ’memb_dim’ in
exp) and obs_memb is the number of member in observation (i.e., ’memb_dim’ in obs).



46 Eno

$corr The correlation coefficient.

$p.val The p-value. Only present if pval = TRUE.

$conf.lower The lower confidence interval. Only present if conf = TRUE.

$conf.upper The upper confidence interval. Only present if conf = TRUE.

Examples

# Case 1: Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
runmean_months <- 12

# Smooth along lead-times
smooth_ano_exp <- Smoothing(ano_exp, runmeanlen = runmean_months)
smooth_ano_obs <- Smoothing(ano_obs, runmeanlen = runmean_months)
required_complete_row <- 3 # Discard start dates which contain any NA lead-times
leadtimes_per_startdate <- 60
corr <- Corr(MeanDims(smooth_ano_exp, 'member'),

MeanDims(smooth_ano_obs, 'member'),
comp_dim = 'ftime',
limits = c(ceiling((runmean_months + 1) / 2),
leadtimes_per_startdate - floor(runmean_months / 2)))

# Case 2: Keep member dimension
corr <- Corr(smooth_ano_exp, smooth_ano_obs, memb_dim = 'member')
# ensemble mean
corr <- Corr(smooth_ano_exp, smooth_ano_obs, memb_dim = 'member', memb = FALSE)

Eno Compute effective sample size with classical method

Description

Compute the number of effective samples along one dimension of an array. This effective number
of independent observations can be used in statistical/inference tests.
The calculation is based on eno function from Caio Coelho from rclim.txt.

Usage

Eno(data, time_dim = "sdate", na.action = na.pass, ncores = NULL)



EOF 47

Arguments

data A numeric array with named dimensions.

time_dim A function indicating the dimension along which to compute the effective sam-
ple size. The default value is ’sdate’.

na.action A function. It can be na.pass (missing values are allowed) or na.fail (no missing
values are allowed). See details in stats::acf(). The default value is na.pass.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

An array with the same dimension as parameter ’data’ except the time_dim dimension, which is
removed after the computation. The array indicates the number of effective sample along time_dim.

Examples

set.seed(1)
data <- array(rnorm(800), dim = c(dataset = 1, member = 2, sdate = 4,

ftime = 4, lat = 10, lon = 10))
na <- floor(runif(40, min = 1, max = 800))
data[na] <- NA
res <- Eno(data)

EOF Area-weighted empirical orthogonal function analysis using SVD

Description

Perform an area-weighted EOF analysis using single value decomposition (SVD) based on a co-
variance matrix or a correlation matrix if parameter ’corr’ is set to TRUE.

Usage

EOF(
ano,
lat,
lon,
time_dim = "sdate",
space_dim = c("lat", "lon"),
neofs = 15,
corr = FALSE,
ncores = NULL

)



48 EOF

Arguments

ano A numerical array of anomalies with named dimensions to calculate EOF. The
dimensions must have at least ’time_dim’ and ’space_dim’. NAs could exist but
it should be consistent along time_dim. That is, if one grid point has NAs, all
the time steps at this point should be NAs.

lat A vector of the latitudes of ’ano’.

lon A vector of the longitudes of ’ano’.

time_dim A character string indicating the name of the time dimension of ’ano’. The
default value is ’sdate’.

space_dim A vector of two character strings. The first is the dimension name of latitude of
’ano’ and the second is the dimension name of longitude of ’ano’. The default
value is c(’lat’, ’lon’).

neofs A positive integer of the modes to be kept. The default value is 15. If time
length or the product of the length of space_dim is smaller than neofs, neofs
will be changed to the minimum of the three values.

corr A logical value indicating whether to base on a correlation (TRUE) or on a
covariance matrix (FALSE). The default value is FALSE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing:

EOFs An array of EOF patterns normalized to 1 (unitless) with dimensions (number
of modes, rest of the dimensions of ’ano’ except ’time_dim’). Multiplying EOFs
by PCs gives the original reconstructed field.

PCs An array of principal components with the units of the original field to the power
of 2, with dimensions (time_dim, number of modes, rest of the dimensions of
’ano’ except ’space_dim’). ’PCs’ contains already the percentage of explained
variance so, to reconstruct the original field it’s only needed to multiply ’EOFs’
by ’PCs’.

var An array of the percentage ( explained by each mode (number of modes). The di-
mensions are (number of modes, rest of the dimensions of ’ano’ except ’time_dim’
and ’space_dim’).

mask An array of the mask with dimensions (space_dim, rest of the dimensions of
’ano’ except ’time_dim’). It is made from ’ano’, 1 for the positions that ’ano’ has
value and NA for the positions that ’ano’ has NA. It is used to replace NAs with
0s for EOF calculation and mask the result with NAs again after the calculation.

wght An array of the area weighting with dimensions ’space_dim’. It is calculated by
cosine of ’lat’ and used to compute the fraction of variance explained by each
EOFs.

tot_var A number or a numeric array of the total variance explained by all the modes.
The dimensions are same as ’ano’ except ’time_dim’ and ’space_dim’.



EuroAtlanticTC 49

See Also

ProjectField, NAO, PlotBoxWhisker

Examples

# This example computes the EOFs along forecast horizons and plots the one
# that explains the greatest amount of variability. The example data has low
# resolution so the result may not be explanatory, but it displays how to
# use this function.

ano <- Ano_CrossValid(sampleData$mod, sampleData$obs)
tmp <- MeanDims(ano$exp, c('dataset', 'member'))
ano <- tmp[1, , ,]
names(dim(ano)) <- names(dim(tmp))[-2]
eof <- EOF(ano, sampleData$lat, sampleData$lon)
## Not run:
PlotEquiMap(eof$EOFs[1, , ], sampleData$lon, sampleData$lat)

## End(Not run)

EuroAtlanticTC Teleconnection indices in European Atlantic Ocean region

Description

Calculate the four main teleconnection indices in European Atlantic Ocean region: North Atlantic
oscillation (NAO), East Atlantic Pattern (EA), East Atlantic/Western Russia (EAWR), and Scandi-
navian pattern (SCA). The function REOF() is used for the calculation, and the first four modes are
returned.

Usage

EuroAtlanticTC(
ano,
lat,
lon,
ntrunc = 30,
time_dim = "sdate",
space_dim = c("lat", "lon"),
corr = FALSE,
ncores = NULL

)



50 EuroAtlanticTC

Arguments

ano A numerical array of anomalies with named dimensions to calculate REOF then
the four teleconnections. The dimensions must have at least ’time_dim’ and
’space_dim’, and the data should cover the European Atlantic Ocean area (20N-
80N, 90W-60E).

lat A vector of the latitudes of ’ano’. It should be 20N-80N.

lon A vector of the longitudes of ’ano’. It should be 90W-60E.

ntrunc A positive integer of the modes to be kept. The default value is 30. If time length
or the product of latitude length and longitude length is less than ntrunc, ntrunc
is equal to the minimum of the three values.

time_dim A character string indicating the name of the time dimension of ’ano’. The
default value is ’sdate’.

space_dim A vector of two character strings. The first is the dimension name of latitude of
’ano’ and the second is the dimension name of longitude of ’ano’. The default
value is c(’lat’, ’lon’).

corr A logical value indicating whether to base on a correlation (TRUE) or on a
covariance matrix (FALSE). The default value is FALSE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing:

patterns An array of the first four REOF patterns normalized to 1 (unitless) with di-
mensions (modes = 4, the rest of the dimensions of ’ano’ except ’time_dim’).
The modes represent NAO, EA, EAWR, and SCA, of which the order and sign
changes depending on the dataset and period employed, so manual reordering
may be needed. Multiplying ’patterns’ by ’indices’ gives the original recon-
structed field.

indices An array of the first four principal components with the units of the original
field to the power of 2, with dimensions (time_dim, modes = 4, the rest of the
dimensions of ’ano’ except ’space_dim’).

var An array of the percentage ( explained by each mode. The dimensions are
(modes = ntrunc, the rest of the dimensions of ’ano’ except ’time_dim’ and
’space_dim’).

wght An array of the area weighting with dimensions ’space_dim’. It is calculated by
the square root of cosine of ’lat’ and used to compute the fraction of variance
explained by each REOFs.

See Also

REOF NAO



Filter 51

Examples

# Use synthetic data
set.seed(1)
dat <- array(rnorm(800), dim = c(dat = 2, sdate = 5, lat = 8, lon = 15))
lat <- seq(10, 90, length.out = 8)
lon <- seq(-100, 70, length.out = 15)
res <- EuroAtlanticTC(dat, lat = lat, lon = lon)

Filter Filter frequency peaks from an array

Description

Filter out the selected frequency from a time series. The filtering is performed by dichotomy,
seeking for a frequency around the parameter ’freq’ and the phase that maximizes the signal to
subtract from the time series. The maximization of the signal to subtract relies on a minimization
of the mean square differences between the time series (’data’) and the cosine of the specified
frequency and phase.

Usage

Filter(data, freq, time_dim = "ftime", ncores = NULL)

Arguments

data A numeric vector or array of the data to be filtered. If it’s a vector, it should be
a time series. If it’s an array, the dimensions must have at least ’time_dim’.

freq A number of the frequency to filter.

time_dim A character string indicating the dimension along which to compute the filtering.
The default value is ’ftime’.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A numeric vector or array of the filtered data with the dimensions the same as ’data’.

Examples

# Load sample data as in Load() example:
example(Load)
ensmod <- MeanDims(sampleData$mod, 2)
spectrum <- Spectrum(ensmod)

for (jsdate in 1:dim(spectrum)['sdate']) {
for (jlen in 1:dim(spectrum)['ftime']) {



52 GMST

if (spectrum[jlen, 2, 1, jsdate] > spectrum[jlen, 3, 1, jsdate]) {
ensmod[1, jsdate, ] <- Filter(ensmod[1, jsdate, ], spectrum[jlen, 1, 1, jsdate])

}
}

}

PlotAno(InsertDim(ensmod, 2, 1), sdates = startDates)

GMST Compute the Global Mean Surface Temperature (GMST) anomalies

Description

The Global Mean Surface Temperature (GMST) anomalies are computed as the weighted-averaged
surface air temperature anomalies over land and sea surface temperature anomalies over the ocean.
If different members and/or datasets are provided, the climatology (used to calculate the anomalies)
is computed individually for all of them.

Usage

GMST(
data_tas,
data_tos,
data_lats,
data_lons,
mask_sea_land,
sea_value,
type,
mask = NULL,
lat_dim = "lat",
lon_dim = "lon",
monini = 11,
fmonth_dim = "fmonth",
sdate_dim = "sdate",
indices_for_clim = NULL,
year_dim = "year",
month_dim = "month",
na.rm = TRUE,
ncores = NULL

)

Arguments

data_tas A numerical array with the surface air temperature data to be used for the index
computation with, at least, the dimensions: 1) latitude, longitude, start date and
forecast month (in case of decadal predictions), 2) latitude, longitude, year and



GMST 53

month (in case of historical simulations or observations). This data has to be
provided, at least, over the whole region needed to compute the index. The
dimensions must be identical to thos of data_tos.

data_tos A numerical array with the sea surface temperature data to be used for the index
computation with, at least, the dimensions: 1) latitude, longitude, start date and
forecast month (in case of decadal predictions), 2) latitude, longitude, year and
month (in case of historical simulations or observations). This data has to be
provided, at least, over the whole region needed to compute the index. The
dimensions must be identical to thos of data_tas.

data_lats A numeric vector indicating the latitudes of the data.

data_lons A numeric vector indicating the longitudes of the data.

mask_sea_land An array with dimensions [lat_dim = data_lats, lon_dim = data_lons] for blend-
ing ’data_tas’ and ’data_tos’.

sea_value A numeric value indicating the sea grid points in ’mask_sea_land’.

type A character string indicating the type of data (’dcpp’ for decadal predictions,
’hist’ for historical simulations, or ’obs’ for observations or reanalyses).

mask An array of a mask (with 0’s in the grid points that have to be masked) or NULL
(i.e., no mask is used). This parameter allows to remove the values over land
in case the dataset is a combination of surface air temperature over land and
sea surface temperature over the ocean. Also, it can be used to mask those grid
points that are missing in the observational dataset for a fair comparison between
the forecast system and the reference dataset. The default value is NULL.

lat_dim A character string of the name of the latitude dimension. The default value is
’lat’.

lon_dim A character string of the name of the longitude dimension. The default value is
’lon’.

monini An integer indicating the month in which the forecast system is initialized. Only
used when parameter ’type’ is ’dcpp’. The default value is 11, i.e., initialized in
November.

fmonth_dim A character string indicating the name of the forecast month dimension. Only
used if parameter ’type’ is ’dcpp’. The default value is ’fmonth’.

sdate_dim A character string indicating the name of the start date dimension. Only used if
parameter ’type’ is ’dcpp’. The default value is ’sdate’.

indices_for_clim

A numeric vector of the indices of the years to compute the climatology for cal-
culating the anomalies, or NULL so the climatology is calculated over the whole
period. If the data are already anomalies, set it to FALSE. The default value is
NULL.
In case of parameter ’type’ is ’dcpp’, ’indices_for_clim’ must be relative to the
first forecast year, and the climatology is automatically computed over the com-
mon calendar period for the different forecast years.

year_dim A character string indicating the name of the year dimension The default value
is ’year’. Only used if parameter ’type’ is ’hist’ or ’obs’.

month_dim A character string indicating the name of the month dimension. The default
value is ’month’. Only used if parameter ’type’ is ’hist’ or ’obs’.



54 GMST

na.rm A logical value indicanting whether to remove NA values. The default value is
TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A numerical array with the GMST anomalies with the same dimensions as data_tas except the
lat_dim, lon_dim and fmonth_dim (month_dim) in case of decadal predictions (historical simula-
tions or observations). In case of decadal predictions, a new dimension ’fyear’ is added.

Examples

## Observations or reanalyses
obs_tas <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12))
obs_tos <- array(2:101, dim = c(year = 5, lat = 19, lon = 37, month = 12))
mask_sea_land <- array(c(1,0,1), dim = c(lat = 19, lon = 37))
sea_value <- 1
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_obs <- GMST(data_tas = obs_tas, data_tos = obs_tos, data_lats = lat,

data_lons = lon, type = 'obs',
mask_sea_land = mask_sea_land, sea_value = sea_value)

## Historical simulations
hist_tas <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12, member = 5))
hist_tos <- array(2:101, dim = c(year = 5, lat = 19, lon = 37, month = 12, member = 5))
mask_sea_land <- array(c(1,0,1), dim = c(lat = 19, lon = 37))
sea_value <- 1
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_hist <- GMST(data_tas = hist_tas, data_tos = hist_tos, data_lats = lat,

data_lons = lon, type = 'hist', mask_sea_land = mask_sea_land,
sea_value = sea_value)

## Decadal predictions
dcpp_tas <- array(1:100, dim = c(sdate = 5, lat = 19, lon = 37, fmonth = 24, member = 5))
dcpp_tos <- array(2:101, dim = c(sdate = 5, lat = 19, lon = 37, fmonth = 24, member = 5))
mask_sea_land <- array(c(1,0,1), dim = c(lat = 19, lon = 37))
sea_value <- 1
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_dcpp <- GMST(data_tas = dcpp_tas, data_tos = dcpp_tos, data_lats = lat,

data_lons = lon, type = 'dcpp', monini = 1, mask_sea_land = mask_sea_land,
sea_value = sea_value)



GSAT 55

GSAT Compute the Global Surface Air Temperature (GSAT) anomalies

Description

The Global Surface Air Temperature (GSAT) anomalies are computed as the weighted-averaged
surface air temperature anomalies over the global region. If different members and/or datasets are
provided, the climatology (used to calculate the anomalies) is computed individually for all of them.

Usage

GSAT(
data,
data_lats,
data_lons,
type,
lat_dim = "lat",
lon_dim = "lon",
mask = NULL,
monini = 11,
fmonth_dim = "fmonth",
sdate_dim = "sdate",
indices_for_clim = NULL,
year_dim = "year",
month_dim = "month",
na.rm = TRUE,
ncores = NULL

)

Arguments

data A numerical array to be used for the index computation with, at least, the dimen-
sions: 1) latitude, longitude, start date and forecast month (in case of decadal
predictions), 2) latitude, longitude, year and month (in case of historical simu-
lations or observations). This data has to be provided, at least, over the whole
region needed to compute the index.

data_lats A numeric vector indicating the latitudes of the data.

data_lons A numeric vector indicating the longitudes of the data.

type A character string indicating the type of data (’dcpp’ for decadal predictions,
’hist’ for historical simulations, or ’obs’ for observations or reanalyses).

lat_dim A character string of the name of the latitude dimension. The default value is
’lat’.

lon_dim A character string of the name of the longitude dimension. The default value is
’lon’.



56 GSAT

mask An array of a mask (with 0’s in the grid points that have to be masked) or NULL
(i.e., no mask is used). This parameter allows to remove the values over land
in case the dataset is a combination of surface air temperature over land and
sea surface temperature over the ocean. Also, it can be used to mask those grid
points that are missing in the observational dataset for a fair comparison between
the forecast system and the reference dataset. The default value is NULL.

monini An integer indicating the month in which the forecast system is initialized. Only
used when parameter ’type’ is ’dcpp’. The default value is 11, i.e., initialized in
November.

fmonth_dim A character string indicating the name of the forecast month dimension. Only
used if parameter ’type’ is ’dcpp’. The default value is ’fmonth’.

sdate_dim A character string indicating the name of the start date dimension. Only used if
parameter ’type’ is ’dcpp’. The default value is ’sdate’.

indices_for_clim

A numeric vector of the indices of the years to compute the climatology for cal-
culating the anomalies, or NULL so the climatology is calculated over the whole
period. If the data are already anomalies, set it to FALSE. The default value is
NULL.
In case of parameter ’type’ is ’dcpp’, ’indices_for_clim’ must be relative to the
first forecast year, and the climatology is automatically computed over the com-
mon calendar period for the different forecast years.

year_dim A character string indicating the name of the year dimension The default value
is ’year’. Only used if parameter ’type’ is ’hist’ or ’obs’.

month_dim A character string indicating the name of the month dimension. The default
value is ’month’. Only used if parameter ’type’ is ’hist’ or ’obs’.

na.rm A logical value indicanting whether to remove NA values. The default value is
TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A numerical array with the GSAT anomalies with the same dimensions as data except the lat_dim,
lon_dim and fmonth_dim (month_dim) in case of decadal predictions (historical simulations or
observations). In case of decadal predictions, a new dimension ’fyear’ is added.

Examples

## Observations or reanalyses
obs <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12))
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_obs <- GSAT(data = obs, data_lats = lat, data_lons = lon, type = 'obs')

## Historical simulations
hist <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12, member = 5))
lat <- seq(-90, 90, 10)



Histo2Hindcast 57

lon <- seq(0, 360, 10)
index_hist <- GSAT(data = hist, data_lats = lat, data_lons = lon, type = 'hist')

## Decadal predictions
dcpp <- array(1:100, dim = c(sdate = 5, lat = 19, lon = 37, fmonth = 24, member = 5))
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_dcpp <- GSAT(data = dcpp, data_lats = lat, data_lons = lon, type = 'dcpp', monini = 1)

Histo2Hindcast Chunk long simulations for comparison with hindcasts

Description

Reorganize a long run (historical typically) with only one start date into chunks corresponding to a
set of start dates. The time frequency of the data should be monthly.

Usage

Histo2Hindcast(
data,
sdatesin,
sdatesout,
nleadtimesout,
sdate_dim = "sdate",
ftime_dim = "ftime",
ncores = NULL

)

Arguments

data A numeric array of model or observational data with dimensions at least sdate_dim
and ftime_dim.

sdatesin A character string of the start date of ’data’. The format should be ’YYYYM-
MDD’ or ’YYYYMM’.

sdatesout A vector of character string indicating the expected start dates of the output. The
format should be ’YYYYMMDD’ or ’YYYYMM’.

nleadtimesout A positive integer indicating the length of leadtimes of the output.

sdate_dim A character string indicating the name of the sdate date dimension of ’data’. The
default value is ’sdate’.

ftime_dim A character string indicating the name of the lead time dimension of ’data’. The
default value is ’ftime’.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.



58 InsertDim

Value

A numeric array with the same dimensions as data, except the length of sdate_dim is ’sdatesout’
and the length of ftime_dim is nleadtimesout.

Examples

sdates_out <- c('19901101', '19911101', '19921101', '19931101', '19941101')
leadtimes_per_startdate <- 12
exp_data <- Histo2Hindcast(sampleData$mod, startDates,

sdates_out, leadtimes_per_startdate)
obs_data <- Histo2Hindcast(sampleData$obs, startDates,

sdates_out, leadtimes_per_startdate)
## Not run:

exp_data <- Reorder(exp_data, c(3, 4, 1, 2))
obs_data <- Reorder(obs_data, c(3, 4, 1, 2))
PlotAno(exp_data, obs_data, sdates_out,

toptitle = paste('Anomalies reorganized into shorter chunks'),
ytitle = 'K', fileout = NULL)

## End(Not run)

InsertDim Add a named dimension to an array

Description

Insert an extra dimension into an array at position ’posdim’ with length ’lendim’. The array repeats
along the new dimension.

Usage

InsertDim(data, posdim, lendim, name = NULL, ncores = NULL)

Arguments

data An array to which the additional dimension to be added.

posdim An integer indicating the position of the new dimension.

lendim An integer indicating the length of the new dimension.

name A character string indicating the name for the new dimension. The default value
is NULL.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL. This parameter is deprecated now.



LeapYear 59

Value

An array as parameter ’data’ but with the added named dimension.

Examples

a <- array(rnorm(15), dim = c(a = 3, b = 1, c = 5, d = 1))
res <- InsertDim(InsertDim(a, posdim = 2, lendim = 1, name = 'e'), 4, c(f = 2))
dim(res)

LeapYear Checks Whether A Year Is Leap Year

Description

This function tells whether a year is a leap year or not.

Usage

LeapYear(year)

Arguments

year A numeric value indicating the year in the Gregorian calendar.

Value

Boolean telling whether the year is a leap year or not.

Examples

print(LeapYear(1990))
print(LeapYear(1991))
print(LeapYear(1992))
print(LeapYear(1993))



60 Load

Load Loads Experimental And Observational Data

Description

This function loads monthly or daily data from a set of specified experimental datasets together with
data that date-corresponds from a set of specified observational datasets. See parameters ’storefreq’,
’sampleperiod’, ’exp’ and ’obs’.

A set of starting dates is specified through the parameter ’sdates’. Data of each starting date is
loaded for each model. Load() arranges the data in two arrays with a similar format both with the
following dimensions:

1. The number of experimental datasets determined by the user through the argument ’exp’ (for
the experimental data array) or the number of observational datasets available for validation
(for the observational array) determined as well by the user through the argument ’obs’.

2. The greatest number of members across all experiments (in the experimental data array) or
across all observational datasets (in the observational data array).

3. The number of starting dates determined by the user through the ’sdates’ argument.

4. The greatest number of lead-times.

5. The number of latitudes of the selected zone.

6. The number of longitudes of the selected zone.

Dimensions 5 and 6 are optional and their presence depends on the type of the specified variable
(global mean or 2-dimensional) and on the selected output type (area averaged time series, latitude
averaged time series, longitude averaged time series or 2-dimensional time series).
In the case of loading an area average the dimensions of the arrays will be only the first 4.

Only a specified variable is loaded from each experiment at each starting date. See parameter
’var’.
Afterwards, observational data that matches every starting date and lead-time of every experimental
dataset is fetched in the file system (so, if two predictions at two different start dates overlap, some
observational values will be loaded and kept in memory more than once).
If no data is found in the file system for an experimental or observational array point it is filled with
an NA value.

If the specified output is 2-dimensional or latitude- or longitude-averaged time series all the data is
interpolated into a common grid. If the specified output type is area averaged time series the data
is averaged on the individual grid of each dataset but can also be averaged after interpolating into a
common grid. See parameters ’grid’ and ’method’.
Once the two arrays are filled by calling this function, other functions in the s2dv package that
receive as inputs data formatted in this data structure can be executed (e.g: Clim() to compute
climatologies, Ano() to compute anomalies, ...).

Load() has many additional parameters to disable values and trim dimensions of selected variable,
even masks can be applied to 2-dimensional variables. See parameters ’nmember’, ’nmemberobs’,



Load 61

’nleadtime’, ’leadtimemin’, ’leadtimemax’, ’sampleperiod’, ’lonmin’, ’lonmax’, ’latmin’, ’latmax’,
’maskmod’, ’maskobs’, ’varmin’, ’varmax’.

The parameters ’exp’ and ’obs’ can take various forms. The most direct form is a list of lists,
where each sub-list has the component ’path’ associated to a character string with a pattern of the
path to the files of a dataset to be loaded. These patterns can contain wildcards and tags that will
be replaced automatically by Load() with the specified starting dates, member numbers, variable
name, etc.
See parameter ’exp’ or ’obs’ for details.

Only NetCDF files are supported. OPeNDAP URLs to NetCDF files are also supported.
Load() can load 2-dimensional or global mean variables in any of the following formats:

• experiments:

– file per ensemble per starting date (YYYY, MM and DD somewhere in the path)
– file per member per starting date (YYYY, MM, DD and MemberNumber somewhere in

the path. Ensemble experiments with different numbers of members can be loaded in a
single Load() call.)

(YYYY, MM and DD specify the starting dates of the predictions)

• observations:

– file per ensemble per month (YYYY and MM somewhere in the path)
– file per member per month (YYYY, MM and MemberNumber somewhere in the path,

obs with different numbers of members supported)
– file per dataset (No constraints in the path but the time axes in the file have to be properly

defined)

(YYYY and MM correspond to the actual month data in the file)

In all the formats the data can be stored in a daily or monthly frequency, or a multiple of these (see
parameters ’storefreq’ and ’sampleperiod’).
All the data files must contain the target variable defined over time and potentially over members,
latitude and longitude dimensions in any order, time being the record dimension.
In the case of a two-dimensional variable, the variables longitude and latitude must be defined in-
side the data file too and must have the same names as the dimension for longitudes and latitudes
respectively.
The names of these dimensions (and longitude and latitude variables) and the name for the members
dimension are expected to be ’longitude’, ’latitude’ and ’ensemble’ respectively. However, these
names can be adjusted with the parameter ’dimnames’ or can be configured in the configuration file
(read below in parameters ’exp’, ’obs’ or see ?ConfigFileOpen for more information.
All the data files are expected to have numeric values representable with 32 bits. Be aware when
choosing the fill values or infinite values in the datasets to load.

The Load() function returns a named list following a structure similar to the used in the pack-
age ’downscaleR’.
The components are the following:

• ’mod’ is the array that contains the experimental data. It has the attribute ’dimensions’ asso-
ciated to a vector of strings with the labels of each dimension of the array, in order.



62 Load

• ’obs’ is the array that contains the observational data. It has the attribute ’dimensions’ associ-
ated to a vector of strings with the labels of each dimension of the array, in order.

• ’obs’ is the array that contains the observational data.

• ’lat’ and ’lon’ are the latitudes and longitudes of the grid into which the data is interpolated (0
if the loaded variable is a global mean or the output is an area average).
Both have the attribute ’cdo_grid_des’ associated with a character string with the name of the
common grid of the data, following the CDO naming conventions for grids.
The attribute ’projection’ is kept for compatibility with ’downscaleR’.

• ’Variable’ has the following components:

– ’varName’, with the short name of the loaded variable as specified in the parameter ’var’.
– ’level’, with information on the pressure level of the variable. Is kept to NULL by now.

And the following attributes:

– ’is_standard’, kept for compatibility with ’downscaleR’, tells if a dataset has been ho-
mogenized to standards with ’downscaleR’ catalogs.

– ’units’, a character string with the units of measure of the variable, as found in the source
files.

– ’longname’, a character string with the long name of the variable, as found in the source
files.

– ’daily_agg_cellfun’, ’monthly_agg_cellfun’, ’verification_time’, kept for compatibility
with ’downscaleR’.

• ’Datasets’ has the following components:

– ’exp’, a named list where the names are the identifying character strings of each experi-
ment in ’exp’, each associated to a list with the following components:

* ’members’, a list with the names of the members of the dataset.

* ’source’, a path or URL to the source of the dataset.
– ’obs’, similar to ’exp’ but for observational datasets.

• ’Dates’, with the follwing components:

– ’start’, an array of dimensions (sdate, time) with the POSIX initial date of each forecast
time of each starting date.

– ’end’, an array of dimensions (sdate, time) with the POSIX final date of each forecast
time of each starting date.

• ’InitializationDates’, a vector of starting dates as specified in ’sdates’, in POSIX format.

• ’when’, a time stamp of the date the Load() call to obtain the data was issued.

• ’source_files’, a vector of character strings with complete paths to all the found files involved
in the Load() call.

• ’not_found_files’, a vector of character strings with complete paths to not found files involved
in the Load() call.

Usage

Load(
var,
exp = NULL,



Load 63

obs = NULL,
sdates,
nmember = NULL,
nmemberobs = NULL,
nleadtime = NULL,
leadtimemin = 1,
leadtimemax = NULL,
storefreq = "monthly",
sampleperiod = 1,
lonmin = 0,
lonmax = 360,
latmin = -90,
latmax = 90,
output = "areave",
method = "conservative",
grid = NULL,
maskmod = vector("list", 15),
maskobs = vector("list", 15),
configfile = NULL,
varmin = NULL,
varmax = NULL,
silent = FALSE,
nprocs = NULL,
dimnames = NULL,
remapcells = 2,
path_glob_permissive = "partial"

)

Arguments

var Short name of the variable to load. It should coincide with the variable name
inside the data files.
E.g.: var = 'tos', var = 'tas', var = 'prlr'.
In some cases, though, the path to the files contains twice or more times the short
name of the variable but the actual name of the variable inside the data files is
different. In these cases it may be convenient to provide var with the name that
appears in the file paths (see details on parameters exp and obs).

exp Parameter to specify which experimental datasets to load data from.
It can take two formats: a list of lists or a vector of character strings. Each for-
mat will trigger a different mechanism of locating the requested datasets.
The first format is adequate when loading data you’ll only load once or occasion-
ally. The second format is targeted to avoid providing repeatedly the information
on a certain dataset but is more complex to use.

IMPORTANT: Place first the experiment with the largest number of members
and, if possible, with the largest number of leadtimes. If not possible, the argu-
ments ’nmember’ and/or ’nleadtime’ should be filled to not miss any member or
leadtime.



64 Load

If ’exp’ is not specified or set to NULL, observational data is loaded for each
start-date as far as ’leadtimemax’. If ’leadtimemax’ is not provided, Load()
will retrieve data of a period of time as long as the time period between the first
specified start date and the current date.

List of lists:
A list of lists where each sub-list contains information on the location and for-
mat of the data files of the dataset to load.
Each sub-list can have the following components:

• ’name’: A character string to identify the dataset. Optional.
• ’path’: A character string with the pattern of the path to the files of the

dataset. This pattern can be built up making use of some special tags that
Load() will replace with the appropriate values to find the dataset files.
The allowed tags are $START_DATE$, $YEAR$, $MONTH$, $DAY$,
$MEMBER_NUMBER$, $STORE_FREQ$, $VAR_NAME$, $EXP_NAME$
(only for experimental datasets), $OBS_NAME$ (only for observational
datasets) and $SUFFIX$
Example: /path/to/$EXP_NAME$/postprocessed/$VAR_NAME$/
$VAR_NAME$_$START_DATE$.nc
If ’path’ is not specified and ’name’ is specified, the dataset information will
be fetched with the same mechanism as when using the vector of character
strings (read below).

• ’nc_var_name’: Character string with the actual variable name to look for
inside the dataset files. Optional. Takes, by default, the same value as the
parameter ’var’.

• ’suffix’: Wildcard character string that can be used to build the ’path’ of the
dataset. It can be accessed with the tag $SUFFIX$. Optional. Takes ” by
default.

• ’var_min’: Important: Character string. Minimum value beyond which read
values will be deactivated to NA. Optional. No deactivation is performed
by default.

• ’var_max’: Important: Character string. Maximum value beyond which
read values will be deactivated to NA. Optional. No deactivation is per-
formed by default.

The tag $START_DATES$ will be replaced with all the starting dates specified
in ’sdates’. $YEAR$, $MONTH$ and $DAY$ will take a value for each iter-
ation over ’sdates’, simply these are the same as $START_DATE$ but split in
parts.
$MEMBER_NUMBER$ will be replaced by a character string with each mem-
ber number, from 1 to the value specified in the parameter ’nmember’ (in exper-
imental datasets) or in ’nmemberobs’ (in observational datasets). It will range
from ’01’ to ’N’ or ’0N’ if N < 10.
$STORE_FREQ$ will take the value specified in the parameter ’storefreq’ (’monthly’
or ’daily’).
$VAR_NAME$ will take the value specified in the parameter ’var’.
$EXP_NAME$ will take the value specified in each component of the parame-
ter ’exp’ in the sub-component ’name’.



Load 65

$OBS_NAME$ will take the value specified in each component of the parame-
ter ’obs’ in the sub-component ’obs.
$SUFFIX$ will take the value specified in each component of the parameters
’exp’ and ’obs’ in the sub-component ’suffix’.
Example:

list(
list(
name = 'experimentA',
path = file.path('/path/to/$DATASET_NAME$/$STORE_FREQ$',

'$VAR_NAME$$SUFFIX$',
'$VAR_NAME$_$START_DATE$.nc'),

nc_var_name = '$VAR_NAME$',
suffix = '_3hourly',
var_min = '-1e19',
var_max = '1e19'

)
)

This will make Load() look for, for instance, the following paths, if ’sdates’ is
c(’19901101’, ’19951101’, ’20001101’):
/path/to/experimentA/monthly_mean/tas_3hourly/tas_19901101.nc
/path/to/experimentA/monthly_mean/tas_3hourly/tas_19951101.nc
/path/to/experimentA/monthly_mean/tas_3hourly/tas_20001101.nc

Vector of character strings: To avoid specifying constantly the same informa-
tion to load the same datasets, a vector with only the names of the datasets to
load can be specified.
Load() will then look for the information in a configuration file whose path
must be specified in the parameter ’configfile’.
Check ?ConfigFileCreate, ConfigFileOpen, ConfigEditEntry & co. to
learn how to create a new configuration file and how to add the information
there.
Example: c(’experimentA’, ’experimentB’)

obs Argument with the same format as parameter ’exp’. See details on parameter
’exp’.
If ’obs’ is not specified or set to NULL, no observational data is loaded.

sdates Vector of starting dates of the experimental runs to be loaded following the pat-
tern ’YYYYMMDD’.
This argument is mandatory.
E.g. c(’19601101’, ’19651101’, ’19701101’)

nmember Vector with the numbers of members to load from the specified experimental
datasets in ’exp’.
If not specified, the automatically detected number of members of the first ex-
perimental dataset is detected and replied to all the experimental datasets.
If a single value is specified it is replied to all the experimental datasets.
Data for each member is fetched in the file system. If not found is filled with
NA values.



66 Load

An NA value in the ’nmember’ list is interpreted as "fetch as many members of
each experimental dataset as the number of members of the first experimental
dataset".
Note: It is recommended to specify the number of members of the first experi-
mental dataset if it is stored in file per member format because there are known
issues in the automatic detection of members if the path to the dataset in the
configuration file contains Shell Globbing wildcards such as ’*’.
E.g., c(4, 9)

nmemberobs Vector with the numbers of members to load from the specified observational
datasets in ’obs’.
If not specified, the automatically detected number of members of the first ob-
servational dataset is detected and replied to all the observational datasets.
If a single value is specified it is replied to all the observational datasets.
Data for each member is fetched in the file system. If not found is filled with
NA values.
An NA value in the ’nmemberobs’ list is interpreted as "fetch as many members
of each observational dataset as the number of members of the first observational
dataset".
Note: It is recommended to specify the number of members of the first observa-
tional dataset if it is stored in file per member format because there are known
issues in the automatic detection of members if the path to the dataset in the
configuration file contains Shell Globbing wildcards such as ’*’.
E.g., c(1, 5)

nleadtime Deprecated. See parameter ’leadtimemax’.

leadtimemin Only lead-times higher or equal to ’leadtimemin’ are loaded. Takes by default
value 1.

leadtimemax Only lead-times lower or equal to ’leadtimemax’ are loaded. Takes by default
the number of lead-times of the first experimental dataset in ’exp’.
If ’exp’ is NULL this argument won’t have any effect (see ?Load description).

storefreq Frequency at which the data to be loaded is stored in the file system. Can take
values ’monthly’ or ’daily’.
By default it takes ’monthly’.
Note: Data stored in other frequencies with a period which is divisible by a
month can be loaded with a proper use of ’storefreq’ and ’sampleperiod’ parame-
ters. It can also be loaded if the period is divisible by a day and the observational
datasets are stored in a file per dataset format or ’obs’ is empty.

sampleperiod To load only a subset between ’leadtimemin’ and ’leadtimemax’ with the period
of subsampling ’sampleperiod’.
Takes by default value 1 (all lead-times are loaded).
See ’storefreq’ for more information.

lonmin If a 2-dimensional variable is loaded, values at longitudes lower than ’lonmin’
aren’t loaded.
Must take a value in the range [-360, 360] (if negative longitudes are found in
the data files these are translated to this range).
It is set to 0 if not specified.
If ’lonmin’ > ’lonmax’, data across Greenwich is loaded.



Load 67

lonmax If a 2-dimensional variable is loaded, values at longitudes higher than ’lonmax’
aren’t loaded.
Must take a value in the range [-360, 360] (if negative longitudes are found in
the data files these are translated to this range).
It is set to 360 if not specified.
If ’lonmin’ > ’lonmax’, data across Greenwich is loaded.

latmin If a 2-dimensional variable is loaded, values at latitudes lower than ’latmin’
aren’t loaded.
Must take a value in the range [-90, 90].
It is set to -90 if not specified.

latmax If a 2-dimensional variable is loaded, values at latitudes higher than ’latmax’
aren’t loaded.
Must take a value in the range [-90, 90].
It is set to 90 if not specified.

output This parameter determines the format in which the data is arranged in the output
arrays.
Can take values ’areave’, ’lon’, ’lat’, ’lonlat’.

• ’areave’: Time series of area-averaged variables over the specified domain.
• ’lon’: Time series of meridional averages as a function of longitudes.
• ’lat’: Time series of zonal averages as a function of latitudes.
• ’lonlat’: Time series of 2d fields.

Takes by default the value ’areave’. If the variable specified in ’var’ is a global
mean, this parameter is forced to ’areave’.
All the loaded data is interpolated into the grid of the first experimental dataset
except if ’areave’ is selected. In that case the area averages are computed on each
dataset original grid. A common grid different than the first experiment’s can
be specified through the parameter ’grid’. If ’grid’ is specified when selecting
’areave’ output type, all the loaded data is interpolated into the specified grid
before calculating the area averages.

method This parameter determines the interpolation method to be used when regrid-
ding data (see ’output’). Can take values ’bilinear’, ’bicubic’, ’conservative’,
’distance-weighted’.
See remapcells for advanced adjustments.
Takes by default the value ’conservative’.

grid A common grid can be specified through the parameter ’grid’ when loading 2-
dimensional data. Data is then interpolated onto this grid whichever ’output’
type is specified. If the selected output type is ’areave’ and a ’grid’ is specified,
the area averages are calculated after interpolating to the specified grid.
If not specified and the selected output type is ’lon’, ’lat’ or ’lonlat’, this param-
eter takes as default value the grid of the first experimental dataset, which is read
automatically from the source files.
The grid must be supported by ’cdo’ tools. Now only supported: rNXxNY or
tTRgrid.
Both rNXxNY and tRESgrid yield rectangular regular grids. rNXxNY yields
grids that are evenly spaced in longitudes and latitudes (in degrees). tRESgrid



68 Load

refers to a grid generated with series of spherical harmonics truncated at the
RESth harmonic. However these spectral grids are usually associated to a gaus-
sian grid, the latitudes of which are spaced with a Gaussian quadrature (not
evenly spaced in degrees). The pattern tRESgrid will yield a gaussian grid.
E.g., ’r96x72’ Advanced: If the output type is ’lon’, ’lat’ or ’lonlat’ and no com-
mon grid is specified, the grid of the first experimental or observational dataset
is detected and all data is then interpolated onto this grid. If the first experi-
mental or observational dataset’s data is found shifted along the longitudes (i.e.,
there’s no value at the longitude 0 but at a longitude close to it), the data is re-
interpolated to suppress the shift. This has to be done in order to make sure all
the data from all the datasets is properly aligned along longitudes, as there’s no
option so far in Load to specify grids starting at longitudes other than 0. This
issue doesn’t affect when loading in ’areave’ mode without a common grid, the
data is not re-interpolated in that case.

maskmod List of masks to be applied to the data of each experimental dataset respectively,
if a 2-dimensional variable is specified in ’var’.
Each mask can be defined in 2 formats:
a) a matrix with dimensions c(longitudes, latitudes).
b) a list with the components ’path’ and, optionally, ’nc_var_name’.
In the format a), the matrix must have the same size as the common grid or with
the same size as the grid of the corresponding experimental dataset if ’areave’
output type is specified and no common ’grid’ is specified.
In the format b), the component ’path’ must be a character string with the path to
a NetCDF mask file, also in the common grid or in the grid of the corresponding
dataset if ’areave’ output type is specified and no common ’grid’ is specified.
If the mask file contains only a single variable, there’s no need to specify the
component ’nc_var_name’. Otherwise it must be a character string with the
name of the variable inside the mask file that contains the mask values. This
variable must be defined only over 2 dimensions with length greater or equal to
1.
Whichever the mask format, a value of 1 at a point of the mask keeps the original
value at that point whereas a value of 0 disables it (replaces by a NA value).
By default all values are kept (all ones).
The longitudes and latitudes in the matrix must be in the same order as in the
common grid or as in the original grid of the corresponding dataset when loading
in ’areave’ mode. You can find out the order of the longitudes and latitudes of a
file with ’cdo griddes’.
Note that in a common CDO grid defined with the patterns ’t<RES>grid’ or
’r<NX>x<NY>’ the latitudes and latitudes are ordered, by definition, from -90
to 90 and from 0 to 360, respectively.
If you are loading maps (’lonlat’, ’lon’ or ’lat’ output types) all the data will
be interpolated onto the common ’grid’. If you want to specify a mask, you
will have to provide it already interpolated onto the common grid (you may
use ’cdo’ libraries for this purpose). It is not usual to apply different masks on
experimental datasets on the same grid, so all the experiment masks are expected
to be the same.
Warning: When loading maps, any masks defined for the observational data
will be ignored to make sure the same mask is applied to the experimental and



Load 69

observational data.
Warning: list() compulsory even if loading 1 experimental dataset only!
E.g., list(array(1, dim = c(num_lons, num_lats)))

maskobs See help on parameter ’maskmod’.
configfile Path to the s2dv configuration file from which to retrieve information on loca-

tion in file system (and other) of datasets.
If not specified, the configuration file used at BSC-ES will be used (it is included
in the package).
Check the BSC’s configuration file or a template of configuration file in the
folder ’inst/config’ in the package.
Check further information on the configuration file mechanism in ConfigFileOpen().

varmin Loaded experimental and observational data values smaller than ’varmin’ will
be disabled (replaced by NA values).
By default no deactivation is performed.

varmax Loaded experimental and observational data values greater than ’varmax’ will
be disabled (replaced by NA values).
By default no deactivation is performed.

silent Parameter to show (FALSE) or hide (TRUE) information messages.
Warnings will be displayed even if ’silent’ is set to TRUE.
Takes by default the value ’FALSE’.

nprocs Number of parallel processes created to perform the fetch and computation of
data.
These processes will use shared memory in the processor in which Load() is
launched.
By default the number of logical cores in the machine will be detected and as
many processes as logical cores there are will be created.
A value of 1 won’t create parallel processes.
When running in multiple processes, if an error occurs in any of the processes,
a crash message appears in the R session of the original process but no detail is
given about the error. A value of 1 will display all error messages in the original
and only R session.
Note: the parallel process create other blocking processes each time they need
to compute an interpolation via ’cdo’.

dimnames Named list where the name of each element is a generic name of the expected
dimensions inside the NetCDF files. These generic names are ’lon’, ’lat’ and
’member’. ’time’ is not needed because it’s detected automatically by discard.
The value associated to each name is the actual dimension name in the NetCDF
file.
The variables in the file that contain the longitudes and latitudes of the data (if
the data is a 2-dimensional variable) must have the same name as the longitude
and latitude dimensions.
By default, these names are ’longitude’, ’latitude’ and ’ensemble. If any of
those is defined in the ’dimnames’ parameter, it takes priority and overwrites
the default value. E.g., list(lon = ’x’, lat = ’y’) In that example, the dimension
’member’ will take the default value ’ensemble’.

remapcells When loading a 2-dimensional variable, spatial subsets can be requested via
lonmin, lonmax, latmin and latmax. When Load() obtains the subset it is



70 Load

then interpolated if needed with the method specified in method.
The result of this interpolation can vary if the values surrounding the spatial
subset are not present. To better control this process, the width in number of
grid cells of the surrounding area to be taken into account can be specified with
remapcells. A value of 0 will take into account no additional cells but will
generate less traffic between the storage and the R processes that load data.
A value beyond the limits in the data files will be automatically runcated to the
actual limit.
The default value is 2.

path_glob_permissive

In some cases, when specifying a path pattern (either in the parameters ’exp’/’obs’
or in a configuration file) one can specify path patterns that contain shell glob-
bing expressions. Too much freedom in putting globbing expressions in the
path patterns can be dangerous and make Load() find a file in the file system
for a start date for a dataset that really does not belong to that dataset. For ex-
ample, if the file system contains two directories for two different experiments
that share a part of their path and the path pattern contains globbing expres-
sions: /experiments/model1/expA/monthly_mean/tos/tos_19901101.nc /experi-
ments/model2/expA/monthly_mean/tos/tos_19951101.nc And the path pattern
is used as in the example right below to load data of only the experiment ’expA’
of the model ’model1’ for the starting dates ’19901101’ and ’19951101’, Load()
will undesiredly yield data for both starting dates, even if in fact there is data
only for the first one:
expA <-list(path = file.path('/experiments/*/expA/monthly_mean/$VAR_NAME$','$VAR_NAME$_$START_DATE$.nc')
data <-Load('tos',list(expA),NULL,c('19901101','19951101')) To avoid
these situations, the parameter path_glob_permissive is set by default to 'partial',
which forces Load() to replace all the globbing expressions of a path pattern of
a data set by fixed values taken from the path of the first found file for each
data set, up to the folder right before the final files (globbing expressions in
the file name will not be replaced, only those in the path to the file). Replace-
ment of globbing expressions in the file name can also be triggered by setting
path_glob_permissive to FALSE or 'no'. If needed to keep all globbing ex-
pressions, path_glob_permissive can be set to TRUE or 'yes'.

Details

The two output matrices have between 2 and 6 dimensions:

1. Number of experimental/observational datasets.
2. Number of members.
3. Number of startdates.
4. Number of leadtimes.
5. Number of latitudes (optional).
6. Number of longitudes (optional).

but the two matrices have the same number of dimensions and only the first two dimensions can
have different lengths depending on the input arguments. For a detailed explanation of the process,
read the documentation attached to the package or check the comments in the code.



Load 71

Value

Load() returns a named list following a structure similar to the used in the package ’downscaleR’.
The components are the following:

• ’mod’ is the array that contains the experimental data. It has the attribute ’dimensions’ asso-
ciated to a vector of strings with the labels of each dimension of the array, in order. The order
of the latitudes is always forced to be from 90 to -90 whereas the order of the longitudes is
kept as in the original files (if possible). The longitude values provided in lon lower than 0
are added 360 (but still kept in the original order). In some cases, however, if multiple data
sets are loaded in longitude-latitude mode, the longitudes (and also the data arrays in mod and
obs) are re-ordered afterwards by Load() to range from 0 to 360; a warning is given in such
cases. The longitude and latitude of the center of the grid cell that corresponds to the value
[j, i] in ’mod’ (along the dimensions latitude and longitude, respectively) can be found in the
outputs lon[i] and lat[j]

• ’obs’ is the array that contains the observational data. The same documentation of parameter
’mod’ applies to this parameter.

• ’lat’ and ’lon’ are the latitudes and longitudes of the centers of the cells of the grid the data is
interpolated into (0 if the loaded variable is a global mean or the output is an area average).
Both have the attribute ’cdo_grid_des’ associated with a character string with the name of the
common grid of the data, following the CDO naming conventions for grids.
’lon’ has the attributes ’first_lon’ and ’last_lon’, with the first and last longitude values found
in the region defined by ’lonmin’ and ’lonmax’. ’lat’ has also the equivalent attributes ’first_lat’
and ’last_lat’.
’lon’ has also the attribute ’data_across_gw’ which tells whether the requested region via ’lon-
min’, ’lonmax’, ’latmin’, ’latmax’ goes across the Greenwich meridian. As explained in the
documentation of the parameter ’mod’, the loaded data array is kept in the same order as in the
original files when possible: this means that, in some cases, even if the data goes across the
Greenwich, the data array may not go across the Greenwich. The attribute ’array_across_gw’
tells whether the array actually goes across the Greenwich. E.g: The longitudes in the data
files are defined to be from 0 to 360. The requested longitudes are from -80 to 40. The original
order is kept, hence the longitudes in the array will be ordered as follows: 0, ..., 40, 280, ...,
360. In that case, ’data_across_gw’ will be TRUE and ’array_across_gw’ will be FALSE.
The attribute ’projection’ is kept for compatibility with ’downscaleR’.

• ’Variable’ has the following components:

– ’varName’, with the short name of the loaded variable as specified in the parameter ’var’.
– ’level’, with information on the pressure level of the variable. Is kept to NULL by now.

And the following attributes:

– ’is_standard’, kept for compatibility with ’downscaleR’, tells if a dataset has been ho-
mogenized to standards with ’downscaleR’ catalogs.

– ’units’, a character string with the units of measure of the variable, as found in the source
files.

– ’longname’, a character string with the long name of the variable, as found in the source
files.

– ’daily_agg_cellfun’, ’monthly_agg_cellfun’, ’verification_time’, kept for compatibility
with ’downscaleR’.

• ’Datasets’ has the following components:



72 Load

– ’exp’, a named list where the names are the identifying character strings of each experi-
ment in ’exp’, each associated to a list with the following components:

* ’members’, a list with the names of the members of the dataset.

* ’source’, a path or URL to the source of the dataset.
– ’obs’, similar to ’exp’ but for observational datasets.

• ’Dates’, with the follwing components:

– ’start’, an array of dimensions (sdate, time) with the POSIX initial date of each forecast
time of each starting date.

– ’end’, an array of dimensions (sdate, time) with the POSIX final date of each forecast
time of each starting date.

• ’InitializationDates’, a vector of starting dates as specified in ’sdates’, in POSIX format.

• ’when’, a time stamp of the date the Load() call to obtain the data was issued.

• ’source_files’, a vector of character strings with complete paths to all the found files involved
in the Load() call.

• ’not_found_files’, a vector of character strings with complete paths to not found files involved
in the Load() call.

Examples

# Let's assume we want to perform verification with data of a variable
# called 'tos' from a model called 'model' and observed data coming from
# an observational dataset called 'observation'.
#
# The model was run in the context of an experiment named 'experiment'.
# It simulated from 1st November in 1985, 1990, 1995, 2000 and 2005 for a
# period of 5 years time from each starting date. 5 different sets of
# initial conditions were used so an ensemble of 5 members was generated
# for each starting date.
# The model generated values for the variables 'tos' and 'tas' in a
# 3-hourly frequency but, after some initial post-processing, it was
# averaged over every month.
# The resulting monthly average series were stored in a file for each
# starting date for each variable with the data of the 5 ensemble members.
# The resulting directory tree was the following:
# model
# |--> experiment
# |--> monthly_mean
# |--> tos_3hourly
# | |--> tos_19851101.nc
# | |--> tos_19901101.nc
# | .
# | .
# | |--> tos_20051101.nc
# |--> tas_3hourly
# |--> tas_19851101.nc
# |--> tas_19901101.nc
# .
# .
# |--> tas_20051101.nc



Load 73

#
# The observation recorded values of 'tos' and 'tas' at each day of the
# month over that period but was also averaged over months and stored in
# a file per month. The directory tree was the following:
# observation
# |--> monthly_mean
# |--> tos
# | |--> tos_198511.nc
# | |--> tos_198512.nc
# | |--> tos_198601.nc
# | .
# | .
# | |--> tos_201010.nc
# |--> tas
# |--> tas_198511.nc
# |--> tas_198512.nc
# |--> tas_198601.nc
# .
# .
# |--> tas_201010.nc
#
# The model data is stored in a file-per-startdate fashion and the
# observational data is stored in a file-per-month, and both are stored in
# a monthly frequency. The file format is NetCDF.
# Hence all the data is supported by Load() (see details and other supported
# conventions in ?Load) but first we need to configure it properly.
#
# These data files are included in the package (in the 'sample_data' folder),
# only for the variable 'tos'. They have been interpolated to a very low
# resolution grid so as to make it on CRAN.
# The original grid names (following CDO conventions) for experimental and
# observational data were 't106grid' and 'r180x89' respectively. The final
# resolutions are 'r20x10' and 'r16x8' respectively.
# The experimental data comes from the decadal climate prediction experiment
# run at IC3 in the context of the CMIP5 project. Its name within IC3 local
# database is 'i00k'.
# The observational dataset used for verification is the 'ERSST'
# observational dataset.
#
# The next two examples are equivalent and show how to load the variable
# 'tos' from these sample datasets, the first providing lists of lists to
# the parameters 'exp' and 'obs' (see documentation on these parameters) and
# the second providing vectors of character strings, hence using a
# configuration file.
#
# The code is not run because it dispatches system calls to 'cdo' which is
# not allowed in the examples as per CRAN policies. You can run it on your
# system though.
# Instead, the code in 'dontshow' is run, which loads the equivalent
# already processed data in R.
#
# Example 1: Providing lists of lists to 'exp' and 'obs':
#



74 Load

## Not run:
data_path <- system.file('sample_data', package = 's2dv')
exp <- list(

name = 'experiment',
path = file.path(data_path, 'model/$EXP_NAME$/monthly_mean',

'$VAR_NAME$_3hourly/$VAR_NAME$_$START_DATES$.nc')
)

obs <- list(
name = 'observation',
path = file.path(data_path, 'observation/$OBS_NAME$/monthly_mean',

'$VAR_NAME$/$VAR_NAME$_$YEAR$$MONTH$.nc')
)

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(exp), list(obs), startDates,

output = 'areave', latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40)

## End(Not run)
#
# Example 2: Providing vectors of character strings to 'exp' and 'obs'
# and using a configuration file.
#
# The configuration file 'sample.conf' that we will create in the example
# has the proper entries to load these (see ?LoadConfigFile for details on
# writing a configuration file).
#
## Not run:

data_path <- system.file('sample_data', package = 's2dv')
expA <- list(name = 'experiment', path = file.path(data_path,

'model/$EXP_NAME$/$STORE_FREQ$_mean/$VAR_NAME$_3hourly',
'$VAR_NAME$_$START_DATE$.nc'))

obsX <- list(name = 'observation', path = file.path(data_path,
'$OBS_NAME$/$STORE_FREQ$_mean/$VAR_NAME$',
'$VAR_NAME$_$YEAR$$MONTH$.nc'))

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(expA), list(obsX), startDates,

output = 'areave', latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40)

#
# Example 3: providing character strings in 'exp' and 'obs', and providing
# a configuration file.
# The configuration file 'sample.conf' that we will create in the example
# has the proper entries to load these (see ?LoadConfigFile for details on
# writing a configuration file).
#
configfile <- paste0(tempdir(), '/sample.conf')
ConfigFileCreate(configfile, confirm = FALSE)
c <- ConfigFileOpen(configfile)
c <- ConfigEditDefinition(c, 'DEFAULT_VAR_MIN', '-1e19', confirm = FALSE)
c <- ConfigEditDefinition(c, 'DEFAULT_VAR_MAX', '1e19', confirm = FALSE)



MeanDims 75

data_path <- system.file('sample_data', package = 's2dv')
exp_data_path <- paste0(data_path, '/model/$EXP_NAME$/')
obs_data_path <- paste0(data_path, '/$OBS_NAME$/')
c <- ConfigAddEntry(c, 'experiments', dataset_name = 'experiment',

var_name = 'tos', main_path = exp_data_path,
file_path = '$STORE_FREQ$_mean/$VAR_NAME$_3hourly/$VAR_NAME$_$START_DATE$.nc')

c <- ConfigAddEntry(c, 'observations', dataset_name = 'observation',
var_name = 'tos', main_path = obs_data_path,
file_path = '$STORE_FREQ$_mean/$VAR_NAME$/$VAR_NAME$_$YEAR$$MONTH$.nc')

ConfigFileSave(c, configfile, confirm = FALSE)

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', c('experiment'), c('observation'), startDates,

output = 'areave', latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40, configfile = configfile)

## End(Not run)

MeanDims Average an array along multiple dimensions

Description

This function returns the mean of an array along a set of dimensions and preserves the dimension
names if it has.

Usage

MeanDims(data, dims, na.rm = FALSE)

Arguments

data An array to be averaged.

dims A vector of numeric or charactor string, indicating along which dimensions to
average.

na.rm A logical value indicating whether to ignore NA values (TRUE) or not (FALSE).

Value

An array with the same dimension as parameter ’data’ except the ’dims’ dimensions. removed.

Examples

a <- array(rnorm(24), dim = c(2, 3, 4))
MeanDims(a, 2)
MeanDims(a, c(2, 3))



76 NAO

NAO Compute the North Atlantic Oscillation (NAO) Index

Description

Compute the North Atlantic Oscillation (NAO) index based on the leading EOF of the sea level pres-
sure (SLP) anomalies over the north Atlantic region (20N-80N, 80W-40E). The PCs are obtained
by projecting the forecast and observed anomalies onto the observed EOF pattern or the forecast
anomalies onto the EOF pattern of the other years of the forecast. By default (ftime_avg = 2:4),
NAO() computes the NAO index for 1-month lead seasonal forecasts that can be plotted with Plot-
BoxWhisker(). It returns cross-validated PCs of the NAO index for forecast (exp) and observations
(obs) based on the leading EOF pattern.

Usage

NAO(
exp = NULL,
obs = NULL,
lat,
lon,
time_dim = "sdate",
memb_dim = "member",
space_dim = c("lat", "lon"),
ftime_dim = "ftime",
ftime_avg = 2:4,
obsproj = TRUE,
ncores = NULL

)

Arguments

exp A named numeric array of North Atlantic SLP (20N-80N, 80W-40E) forecast
anomalies from Ano() or Ano_CrossValid() with dimensions ’time_dim’, ’memb_dim’,
’ftime_dim’, and ’space_dim’ at least. If only NAO of observational data needs
to be computed, this parameter can be left to NULL. The default value is NULL.

obs A named numeric array of North Atlantic SLP (20N-80N, 80W-40E) observed
anomalies from Ano() or Ano_CrossValid() with dimensions ’time_dim’, ’ftime_dim’,
and ’space_dim’ at least. If only NAO of experimental data needs to be com-
puted, this parameter can be left to NULL. The default value is NULL.

lat A vector of the latitudes of ’exp’ and ’obs’.

lon A vector of the longitudes of ’exp’ and ’obs’.

time_dim A character string indicating the name of the time dimension of ’exp’ and ’obs’.
The default value is ’sdate’.

memb_dim A character string indicating the name of the member dimension of ’exp’ (and
’obs’, optional). If ’obs’ has memb_dim, the length must be 1. The default value
is ’member’.



NAO 77

space_dim A vector of two character strings. The first is the dimension name of latitude of
’ano’ and the second is the dimension name of longitude of ’ano’. The default
value is c(’lat’, ’lon’).

ftime_dim A character string indicating the name of the forecast time dimension of ’exp’
and ’obs’. The default value is ’ftime’.

ftime_avg A numeric vector of the forecast time steps to average across the target period.
The default value is 2:4, i.e., from 2nd to 4th forecast time steps.

obsproj A logical value indicating whether to compute the NAO index by projecting the
forecast anomalies onto the leading EOF of observational reference (TRUE) or
compute the NAO by first computing the leading EOF of the forecast anomalies
(in cross-validation mode, i.e. leaving the year you are evaluating out), and
then projecting forecast anomalies onto this EOF (FALSE). The default value is
TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list which contains:

exp A numeric array of forecast NAO index in verification format with the same
dimensions as ’exp’ except space_dim and ftime_dim.

obs A numeric array of observed NAO index in verification format with the same
dimensions as ’obs’ except space_dim and ftime_dim.

References

Doblas-Reyes, F.J., Pavan, V. and Stephenson, D. (2003). The skill of multi-model seasonal fore-
casts of the wintertime North Atlantic Oscillation. Climate Dynamics, 21, 501-514. DOI: 10.1007/s00382-
003-0350-4

Examples

# Make up synthetic data
set.seed(1)
exp <- array(rnorm(1620), dim = c(member = 2, sdate = 3, ftime = 5, lat = 6, lon = 9))
set.seed(2)
obs <- array(rnorm(1620), dim = c(member = 1, sdate = 3, ftime = 5, lat = 6, lon = 9))
lat <- seq(20, 80, length.out = 6)
lon <- seq(-80, 40, length.out = 9)
nao <- NAO(exp = exp, obs = obs, lat = lat, lon = lon)

# plot the NAO index
## Not run:

nao$exp <- Reorder(nao$exp, c(2, 1))
nao$obs <- Reorder(nao$obs, c(2, 1))
PlotBoxWhisker(nao$exp, nao$obs, "NAO index, DJF", "NAO index (PC1) TOS",

monini = 12, yearini = 1985, freq = 1, "Exp. A", "Obs. X")



78 Persistence

## End(Not run)

Persistence Compute persistence

Description

Compute a persistence forecast based on a lagged autoregression of observational data along the
time dimension, with a measure of forecast uncertainty (prediction interval) based on Coelho et al.,
2004.

Usage

Persistence(
data,
dates,
time_dim = "time",
start,
end,
ft_start,
ft_end = ft_start,
max_ft = 10,
nmemb = 1,
na.action = 10,
ncores = NULL

)

Arguments

data A numeric array corresponding to the observational data including the time di-
mension along which the autoregression is computed. The data should start at
least 40 time steps (years or days) before ’start’.

dates A sequence of 4-digit integers (YYYY) or string (YYYY-MM-DD) in class
’Date’ indicating the dates available in the observations.

time_dim A character string indicating the dimension along which to compute the autore-
gression. The default value is ’time’.

start A 4-digit integer (YYYY) or a string (YYYY-MM-DD) in class ’Date’ indicat-
ing the first start date of the persistence forecast. It must be between 1850 and
2020.

end A 4-digit integer (YYYY) or a string (YYYY-MM-DD) in class ’Date’ indicat-
ing the last start date of the persistence forecast. It must be between 1850 and
2020.



Persistence 79

ft_start An integer indicating the forecast time for which the persistence forecast should
be calculated, or the first forecast time of the average forecast times for which
persistence should be calculated.

ft_end An (optional) integer indicating the last forecast time of the average forecast
times for which persistence should be calculated in the case of a multi-timestep
average persistence. The default value is ’ft_start’.

max_ft An integer indicating the maximum forecast time possible for ’data’. For exam-
ple, for decadal prediction ’max_ft’ would correspond to 10 (years). The default
value is 10.

nmemb An integer indicating the number of ensemble members to generate for the per-
sistence forecast. The default value is 1.

na.action A function or an integer. A function (e.g., na.omit, na.exclude, na.fail, na.pass)
indicates what should happen when the data contain NAs. A numeric indicates
the maximum number of NA position allowed to compute regression. The de-
fault value is 10.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing:

$persistence A numeric array with dimensions ’memb’, time (start dates), latitudes and lon-
gitudes containing the persistence forecast.

$persistence.mean

A numeric array with same dimensions as ’persistence’, except the ’memb’ di-
mension which is of length 1, containing the ensemble mean persistence fore-
cast.

$persistence.predint

A numeric array with same dimensions as ’persistence’, except the ’memb’ di-
mension which is of length 1, containing the prediction interval of the persis-
tence forecast.

$AR.slope A numeric array with same dimensions as ’persistence’, except the ’memb’ di-
mension which is of length 1, containing the slope coefficient of the autoregres-
sion.

$AR.intercept A numeric array with same dimensions as ’persistence’, except the ’memb’ di-
mension which is of length 1, containing the intercept coefficient of the autore-
gression.

$AR.lowCI A numeric array with same dimensions as ’persistence’, except the ’memb’ di-
mension which is of length 1, containing the lower value of the confidence in-
terval of the autoregression.

$AR.highCI A numeric array with same dimensions as ’persistence’, except the ’memb’ di-
mension which is of length 1, containing the upper value of the confidence in-
terval of the autoregression.



80 Plot2VarsVsLTime

Examples

# Case 1: year
# Building an example dataset with yearly start dates from 1920 to 2009
set.seed(1)
obs1 <- rnorm(1 * 70 * 2 * 2)
dim(obs1) <- c(member = 1, time = 70, lat = 2, lon = 2)
dates <- seq(1920, 1989, 1)
res <- Persistence(obs1, dates = dates, start = 1961, end = 1980, ft_start = 1,

nmemb = 2)
# Case 2: day
dates <- seq(as.Date(ISOdate(1990, 1, 1)), as.Date(ISOdate(1990, 4, 1)) ,1)
start <- as.Date(ISOdate(1990, 2, 15))
end <- as.Date(ISOdate(1990, 4, 1))
set.seed(1)
data <- rnorm(1 * length(dates))
dim(data) <- c(member = 1, time = length(dates))
res <- Persistence(data, dates = dates, start = start, end = end, ft_start = 1)

Plot2VarsVsLTime Plot two scores with confidence intervals in a common plot

Description

Plot two input variables that have the same dimensions in a common plot. One plot for all experi-
ments. The input variables should have dimensions (nexp/nmod, nltime).

Usage

Plot2VarsVsLTime(
var1,
var2,
toptitle = "",
ytitle = "",
monini = 1,
freq = 12,
nticks = NULL,
limits = NULL,
listexp = c("exp1", "exp2", "exp3"),
listvars = c("var1", "var2"),
biglab = FALSE,
hlines = NULL,
leg = TRUE,
siglev = FALSE,
sizetit = 1,
show_conf = TRUE,
fileout = NULL,
width = 8,



Plot2VarsVsLTime 81

height = 5,
size_units = "in",
res = 100,
...

)

Arguments

var1 Matrix of dimensions (nexp/nmod, nltime).

var2 Matrix of dimensions (nexp/nmod, nltime).

toptitle Main title, optional.

ytitle Title of Y-axis, optional.

monini Starting month between 1 and 12. Default = 1.

freq 1 = yearly, 12 = monthly, 4 = seasonal, ... Default = 12.

nticks Number of ticks and labels on the x-axis, optional.

limits c(lower limit, upper limit): limits of the Y-axis, optional.

listexp List of experiment names, up to three, optional.

listvars List of names of input variables, optional.

biglab TRUE/FALSE for presentation/paper plot. Default = FALSE.

hlines c(a, b, ...) Add horizontal black lines at Y-positions a, b, ... The default value is
NULL.

leg TRUE/FALSE if legend should be added or not to the plot. Default = TRUE.

siglev TRUE/FALSE if significance level should replace confidence interval.
Default = FALSE.

sizetit Multiplicative factor to change title size, optional.

show_conf TRUE/FALSE to show/not confidence intervals for input variables.

fileout Name of output file. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff.
The default value is NULL.

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.sub cin col.axis col.lab col.main col.sub cra crt csi cxy err
family fg fig font font.axis font.lab font.main font.sub lend lheight ljoin lmitre
mar mex mfcol mfrow mfg mkh oma omd omi page pch plt smo srt tck tcl usr
xaxp xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.



82 PlotACC

Details

Examples of input:
——————

RMSE error for a number of experiments and along lead-time: (nexp, nltime)

Examples

# Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
runmean_months <- 12
smooth_ano_exp <- Smoothing(data = ano_exp, runmeanlen = runmean_months)
smooth_ano_obs <- Smoothing(data = ano_obs, runmeanlen = runmean_months)
dim_to_mean <- 'member' # mean along members
required_complete_row <- 'ftime' # discard startdates for which there are NA leadtimes
leadtimes_per_startdate <- 60
rms <- RMS(MeanDims(smooth_ano_exp, dim_to_mean),

MeanDims(smooth_ano_obs, dim_to_mean),
comp_dim = required_complete_row,
limits = c(ceiling((runmean_months + 1) / 2),

leadtimes_per_startdate - floor(runmean_months / 2)))
smooth_ano_exp_m_sub <- smooth_ano_exp - InsertDim(MeanDims(smooth_ano_exp, 'member',

na.rm = TRUE),
posdim = 3,

lendim = dim(smooth_ano_exp)['member'],
name = 'member')

spread <- Spread(smooth_ano_exp_m_sub, compute_dim = c('member', 'sdate'))
#Combine rms outputs into one array
rms_combine <- abind::abind(rms$conf.lower, rms$rms, rms$conf.upper, along = 0)
rms_combine <- Reorder(rms_combine, c(2, 3, 1, 4))

Plot2VarsVsLTime(InsertDim(rms_combine[, , , ], 1, 1), Reorder(spread$sd, c(1, 3, 2)),
toptitle = 'RMSE and spread', monini = 11, freq = 12,
listexp = c('CMIP5 IC3'), listvar = c('RMSE', 'spread'))

PlotACC Plot Plumes/Timeseries Of Anomaly Correlation Coefficients

Description

Plots plumes/timeseries of ACC from an array with dimensions (output from ACC()):
c(nexp, nobs, nsdates, nltime, 4)
where the fourth dimension is of length 4 and contains the lower limit of the 95% confidence
interval, the ACC, the upper limit of the 95% confidence interval and the 95% significance level
given by a one-sided T-test.



PlotACC 83

Usage

PlotACC(
ACC,
sdates,
toptitle = "",
sizetit = 1,
ytitle = "",
limits = NULL,
legends = NULL,
freq = 12,
biglab = FALSE,
fill = FALSE,
linezero = FALSE,
points = TRUE,
vlines = NULL,
fileout = NULL,
width = 8,
height = 5,
size_units = "in",
res = 100,
...

)

Arguments

ACC An ACC array with with dimensions:
c(nexp, nobs, nsdates, nltime, 4)
with the fourth dimension of length 4 containing the lower limit of the 95%
confidence interval, the ACC, the upper limit of the 95% confidence interval
and the 95% significance level.

sdates A character vector of startdates: c(’YYYYMMDD’,’YYYYMMDD’).

toptitle A character string of the main title, optional.

sizetit A multiplicative factor to scale title size, optional.

ytitle A character string of the title of Y-axis for each experiment: c(”, ”), optional.

limits A numeric vector c(lower limit, upper limit): limits of the Y-axis, optional.

legends A character vector of flags to be written in the legend, optional.

freq A integer: 1 = yearly, 12 = monthly, 4 = seasonal, ... Default: 12.

biglab A logical value for presentation/paper plot, Default = FALSE.

fill A logical value if filled confidence interval. Default = FALSE.

linezero A logical value if a line at y=0 should be added. Default = FALSE.

points A logical value if points instead of lines. Default = TRUE.
Must be TRUE if only 1 leadtime.

vlines A vector of x location where to add vertical black lines, optional.

fileout A character string of the output file name. Extensions allowed: eps/ps, jpeg,
png, pdf, bmp and tiff. Default is NULL.



84 PlotAno

width A numeric of the file width, in the units specified in the parameter size_units
(inches by default). Takes 8 by default.

height A numeric of the file height, in the units specified in the parameter size_units
(inches by default). Takes 5 by default.

size_units A character string of the units of the size of the device (file or window) to plot
in. Inches (’in’) by default. See ?Devices and the creator function of the corre-
sponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.sub cin col.axis col.lab col.main col.sub cra crt csi cxy
err family fg fig fin font font.axis font.lab font.main font.sub lend lheight ljoin
lmitre mar mex mfcol mfrow mfg mkh oma omd omi page plt smo srt tck tcl usr
xaxp xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.

Examples

sampleData$mod <- Season(sampleData$mod, monini = 11, moninf = 12, monsup = 2)
sampleData$obs <- Season(sampleData$obs, monini = 11, moninf = 12, monsup = 2)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
acc <- ACC(ano_exp, ano_obs)
acc_bootstrap <- ACC(ano_exp, ano_obs, conftype = 'bootstrap')
# Combine acc results for PlotACC
res <- array(c(acc$conf.lower, acc$acc, acc$conf.upper, acc$p.val),

dim = c(dim(acc$acc), 4))
res_bootstrap <- array(c(acc$acc_conf.lower, acc$acc, acc$acc_conf.upper, acc$p.val),

dim = c(dim(acc$acc), 4))

PlotACC(res, startDates)
PlotACC(res_bootstrap, startDates)

PlotAno Plot Anomaly time series

Description

Plots time series of raw or smoothed anomalies of any variable output from Load() or Ano() or or
Ano_CrossValid() or Smoothing().



PlotAno 85

Usage

PlotAno(
exp_ano,
obs_ano = NULL,
sdates,
toptitle = rep("", 15),
ytitle = rep("", 15),
limits = NULL,
legends = NULL,
freq = 12,
biglab = FALSE,
fill = TRUE,
memb = TRUE,
ensmean = TRUE,
linezero = FALSE,
points = FALSE,
vlines = NULL,
sizetit = 1,
fileout = NULL,
width = 8,
height = 5,
size_units = "in",
res = 100,
...

)

Arguments

exp_ano A numerical array containing the experimental data:
c(nmod/nexp, nmemb/nparam, nsdates, nltime).

obs_ano A numerical array containing the observational data:
c(nobs, nmemb, nsdates, nltime)

sdates A character vector of start dates in the format of c(’YYYYMMDD’,’YYYYMMDD’).

toptitle Main title for each experiment: c(”,”), optional.

ytitle Title of Y-axis for each experiment: c(”,”), optional.

limits c(lower limit, upper limit): limits of the Y-axis, optional.

legends List of observational dataset names, optional.

freq 1 = yearly, 12 = monthly, 4 = seasonal, ... Default: 12.

biglab TRUE/FALSE for presentation/paper plot. Default = FALSE.

fill TRUE/FALSE if the spread between members should be filled. Default = TRUE.

memb TRUE/FALSE if all members/only the ensemble-mean should be plotted.
Default = TRUE.

ensmean TRUE/FALSE if the ensemble-mean should be plotted. Default = TRUE.

linezero TRUE/FALSE if a line at y=0 should be added. Default = FALSE.



86 PlotBoxWhisker

points TRUE/FALSE if points instead of lines should be shown. Default = FALSE.
vlines List of x location where to add vertical black lines, optional.
sizetit Multiplicative factor to scale title size, optional.
fileout Name of the output file for each experiment: c(”,”). Extensions allowed: eps/ps,

jpeg, png, pdf, bmp and tiff. If filenames with different extensions are passed,
it will be considered only the first one and it will be extended to the rest. The
default value is NULL, which the pop-up window shows.

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.sub cin col.axis col.lab col.main col.sub cra crt csi cxy err
family fg fig font font.axis font.lab font.main font.sub lend lheight ljoin lmitre
mar mex mfcol mfrow mfg mkh oma omd omi page plt smo srt tck tcl usr xaxp
xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.

Examples

# Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
smooth_ano_exp <- Smoothing(ano_exp, time_dim = 'ftime', runmeanlen = 12)
smooth_ano_obs <- Smoothing(ano_obs, time_dim = 'ftime', runmeanlen = 12)
smooth_ano_exp <- Reorder(smooth_ano_exp, c(2, 3, 4, 1))
smooth_ano_obs <- Reorder(smooth_ano_obs, c(2, 3, 4, 1))
PlotAno(smooth_ano_exp, smooth_ano_obs, startDates,

toptitle = paste('smoothed anomalies'), ytitle = c('K', 'K', 'K'),
legends = 'ERSST', biglab = FALSE)

PlotBoxWhisker Box-And-Whisker Plot of Time Series with Ensemble Distribution

Description

Produce time series of box-and-whisker plot showing the distribution of the members of a forecast
vs. the observed evolution. The correlation between forecast and observational data is calculated
and displayed. Only works for n-monthly to n-yearly time series.



PlotBoxWhisker 87

Usage

PlotBoxWhisker(
exp,
obs,
toptitle = "",
ytitle = "",
monini = 1,
yearini = 0,
freq = 1,
expname = "exp 1",
obsname = "obs 1",
drawleg = TRUE,
fileout = NULL,
width = 8,
height = 5,
size_units = "in",
res = 100,
...

)

Arguments

exp Forecast array of multi-member time series, e.g., the NAO index of one exper-
iment. The expected dimensions are c(members, start dates/forecast horizons).
A vector with only the time dimension can also be provided. Only monthly or
lower frequency time series are supported. See parameter freq.

obs Observational vector or array of time series, e.g., the NAO index of the ob-
servations that correspond the forecast data in exp. The expected dimensions
are c(start dates/forecast horizons) or c(1, start dates/forecast horizons). Only
monthly or lower frequency time series are supported. See parameter freq.

toptitle Character string to be drawn as figure title.

ytitle Character string to be drawn as y-axis title.

monini Number of the month of the first time step, from 1 to 12.

yearini Year of the first time step.

freq Frequency of the provided time series: 1 = yearly, 12 = monthly,

expname Experimental dataset name.

obsname Name of the observational reference dataset.

drawleg TRUE/FALSE: whether to draw the legend or not.

fileout Name of output file. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff.
Default = ’output_PlotBox.ps’.

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.



88 PlotBoxWhisker

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
ann ask bg cex.lab cex.sub cin col.axis col.lab col.main col.sub cra crt csi cxy err
family fg fig font font.axis font.lab font.main font.sub lend lheight ljoin lmitre
mex mfcol mfrow mfg mkh oma omd omi page pin plt pty smo srt tck tcl usr
xaxp xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.

Value

Generates a file at the path specified via fileout.

Author(s)

History:
0.1 - 2013-09 (F. Lienert, <flienert@ic3.cat>) - Original code
0.2 - 2015-03 (L. Batte, <lauriane.batte@ic3.cat>) - Removed all
normalization for sake of clarity. 1.0 - 2016-03 (N. Manubens, <nicolau.manubens@bsc.es>) -
Formatting to R CRAN

See Also

EOF, ProjectField, NAO

Examples

# See examples on Load() to understand the first lines in this example
## Not run:

data_path <- system.file('sample_data', package = 's2dverification')
expA <- list(name = 'experiment', path = file.path(data_path,

'model/$EXP_NAME$/$STORE_FREQ$_mean/$VAR_NAME$_3hourly',
'$VAR_NAME$_$START_DATE$.nc'))

obsX <- list(name = 'observation', path = file.path(data_path,
'$OBS_NAME$/$STORE_FREQ$_mean/$VAR_NAME$',
'$VAR_NAME$_$YEAR$$MONTH$.nc'))

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(expA), list(obsX), startDates,

leadtimemin = 1, leadtimemax = 4, output = 'lonlat',
latmin = 27, latmax = 48, lonmin = -12, lonmax = 40)

## End(Not run)

# Now ready to compute the EOFs and project on, for example, the first
# variability mode.



PlotClim 89

ano <- Ano_CrossValid(sampleData$mod, sampleData$obs)
ano_exp <- array(ano$exp, dim = dim(ano$exp)[-2])
ano_obs <- array(ano$obs, dim = dim(ano$obs)[-2])
nao <- NAO(ano_exp, ano_obs, sampleData$lat, sampleData$lon)
# Finally plot the nao index
## Not run:

nao$exp <- Reorder(nao$exp, c(2, 1))
nao$obs <- Reorder(nao$obs, c(2, 1))
PlotBoxWhisker(nao$exp, nao$obs, "NAO index, DJF", "NAO index (PC1) TOS",

monini = 12, yearini = 1985, freq = 1, "Exp. A", "Obs. X")

## End(Not run)

PlotClim Plots Climatologies

Description

Plots climatologies as a function of the forecast time for any index output from Clim() and orga-
nized in matrix with dimensions:
c(nmod/nexp, nmemb/nparam, nltime) or c(nmod/nexp, nltime) for the experiment data
c(nobs, nmemb, nltime) or c(nobs, nltime) for the observational data

Usage

PlotClim(
exp_clim,
obs_clim = NULL,
toptitle = "",
ytitle = "",
monini = 1,
freq = 12,
limits = NULL,
listexp = c("exp1", "exp2", "exp3"),
listobs = c("obs1", "obs2", "obs3"),
biglab = FALSE,
leg = TRUE,
sizetit = 1,
fileout = NULL,
width = 8,
height = 5,
size_units = "in",
res = 100,
...

)



90 PlotClim

Arguments

exp_clim Matrix containing the experimental data with dimensions:
c(nmod/nexp, nmemb/nparam, nltime) or c(nmod/nexp, nltime)

obs_clim Matrix containing the observational data (optional) with dimensions:
c(nobs, nmemb, nltime) or c(nobs, nltime)

toptitle Main title, optional.

ytitle Title of Y-axis, optional.

monini Starting month between 1 and 12. Default = 1.

freq 1 = yearly, 12 = monthly, 4 = seasonal, ... Default = 12.

limits c(lower limit, upper limit): limits of the Y-axis, optional.

listexp List of experiment names, optional.

listobs List of observational dataset names, optional.

biglab TRUE/FALSE for presentation/paper plot. Default = FALSE.

leg TRUE/FALSE to plot the legend or not.

sizetit Multiplicative factor to scale title size, optional.

fileout Name of output file. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff.
The default value is NULL, which the figure is shown in a pop-up window.

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.sub cin col.axis col.lab col.main col.sub cra crt csi cxy err
family fg fig font font.axis font.lab font.main font.sub lend lheight ljoin lmitre
mar mex mfcol mfrow mfg mkh oma omd omi page pch plt smo srt tck usr xaxp
xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.

Examples

# Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
PlotClim(clim$clim_exp, clim$clim_obs, toptitle = paste('climatologies'),

ytitle = 'K', monini = 11, listexp = c('CMIP5 IC3'),
listobs = c('ERSST'), biglab = FALSE, fileout = NULL)



PlotEquiMap 91

PlotEquiMap Maps A Two-Dimensional Variable On A Cylindrical Equidistant Pro-
jection

Description

Map longitude-latitude array (on a regular rectangular or gaussian grid) on a cylindrical equidistant
latitude and longitude projection with coloured grid cells. Only the region for which data has been
provided is displayed. A colour bar (legend) can be plotted and adjusted. It is possible to draw
superimposed arrows, dots, symbols, contour lines and boxes. A number of options is provided to
adjust the position, size and colour of the components. Some parameters are provided to add and
adjust the masks that include continents, oceans, and lakes. This plot function is compatible with
figure layouts if colour bar is disabled.

Usage

PlotEquiMap(
var,
lon,
lat,
varu = NULL,
varv = NULL,
toptitle = NULL,
sizetit = NULL,
units = NULL,
brks = NULL,
cols = NULL,
bar_limits = NULL,
triangle_ends = NULL,
col_inf = NULL,
col_sup = NULL,
colNA = NULL,
color_fun = clim.palette(),
square = TRUE,
filled.continents = NULL,
filled.oceans = FALSE,
coast_color = NULL,
coast_width = 1,
lake_color = NULL,
contours = NULL,
brks2 = NULL,
contour_lwd = 0.5,
contour_color = "black",
contour_lty = 1,
contour_draw_label = TRUE,
contour_label_scale = 1,
dots = NULL,



92 PlotEquiMap

dot_symbol = 4,
dot_size = 1,
arr_subsamp = floor(length(lon)/30),
arr_scale = 1,
arr_ref_len = 15,
arr_units = "m/s",
arr_scale_shaft = 1,
arr_scale_shaft_angle = 1,
axelab = TRUE,
labW = FALSE,
lab_dist_x = NULL,
lab_dist_y = NULL,
degree_sym = FALSE,
intylat = 20,
intxlon = 20,
axes_tick_scale = 1,
axes_label_scale = 1,
drawleg = TRUE,
subsampleg = NULL,
bar_extra_labels = NULL,
draw_bar_ticks = TRUE,
draw_separators = FALSE,
triangle_ends_scale = 1,
bar_label_digits = 4,
bar_label_scale = 1,
units_scale = 1,
bar_tick_scale = 1,
bar_extra_margin = rep(0, 4),
boxlim = NULL,
boxcol = "purple2",
boxlwd = 5,
margin_scale = rep(1, 4),
title_scale = 1,
numbfig = NULL,
fileout = NULL,
width = 8,
height = 5,
size_units = "in",
res = 100,
...

)

Arguments

var Array with the values at each cell of a grid on a regular rectangular or gaus-
sian grid. The array is expected to have two dimensions: c(latitude, longitude).
Longitudes can be in ascending or descending order and latitudes in any or-
der. It can contain NA values (coloured with ’colNA’). Arrays with dimensions
c(longitude, latitude) will also be accepted but ’lon’ and ’lat’ will be used to



PlotEquiMap 93

disambiguate so this alternative is not appropriate for square arrays.

lon Numeric vector of longitude locations of the cell centers of the grid of ’var’, in
ascending or descending order (same as ’var’). Expected to be regularly spaced,
within either of the ranges [-180, 180] or [0, 360]. Data for two adjacent re-
gions split by the limits of the longitude range can also be provided, e.g. lon =
c(0:50,300:360) (’var’ must be provided consitently).

lat Numeric vector of latitude locations of the cell centers of the grid of ’var’, in
any order (same as ’var’). Expected to be from a regular rectangular or gaussian
grid, within the range [-90, 90].

varu Array of the zonal component of wind/current/other field with the same dimen-
sions as ’var’.

varv Array of the meridional component of wind/current/other field with the same
dimensions as ’var’.

toptitle Top title of the figure, scalable with parameter ’title_scale’.

sizetit Scale factor for the figure top title provided in parameter ’toptitle’. Deprecated.
Use ’title_scale’ instead.

units Title at the top of the colour bar, most commonly the units of the variable pro-
vided in parameter ’var’.

brks, cols, bar_limits, triangle_ends

Usually only providing ’brks’ is enough to generate the desired colour bar.
These parameters allow to define n breaks that define n - 1 intervals to clas-
sify each of the values in ’var’. The corresponding grid cell of a given value in
’var’ will be coloured in function of the interval it belongs to. These parameters
are sent to ColorBar() to generate the breaks and colours. Additional colours
for values beyond the limits of the colour bar are also generated and applied to
the plot if ’bar_limits’ or ’brks’ and ’triangle_ends’ are properly provided to do
so. See ?ColorBar for a full explanation.

col_inf, col_sup, colNA

Colour identifiers to colour the values in ’var’ that go beyond the extremes of
the colour bar and to colour NA values, respectively. ’colNA’ takes attr(cols,
’na_color’) if available by default, where cols is the parameter ’cols’ if provided
or the vector of colors returned by ’color_fun’. If not available, it takes ’pink’ by
default. ’col_inf’ and ’col_sup’ will take the value of ’colNA’ if not specified.
See ?ColorBar for a full explanation on ’col_inf’ and ’col_sup’.

color_fun, subsampleg, bar_extra_labels, draw_bar_ticks, draw_separators, triangle_ends_scale, bar_label_digits, bar_label_scale, units_scale, bar_tick_scale, bar_extra_margin

Set of parameters to control the visual aspect of the drawn colour bar. See
?ColorBar for a full explanation.

square Logical value to choose either to draw a coloured square for each grid cell in
’var’ (TRUE; default) or to draw contour lines and fill the spaces in between
with colours (FALSE). In the latter case, ’filled.continents’ will take the value
FALSE if not specified.

filled.continents

Colour to fill in drawn projected continents. Takes the value gray(0.5) by default
or, if ’square = FALSE’, takes the value FALSE. If set to FALSE, continents are
not filled in.



94 PlotEquiMap

filled.oceans A logical value or the color name to fill in drawn projected oceans. The default
value is FALSE. If it is TRUE, the default colour is "light blue".

coast_color Colour of the coast line of the drawn projected continents. Takes the value
gray(0.5) by default.

coast_width Line width of the coast line of the drawn projected continents. Takes the value
1 by default.

lake_color Colour of the lake or other water body inside continents. The default value is
NULL.

contours Array of same dimensions as ’var’ to be added to the plot and displayed with
contours. Parameter ’brks2’ is required to define the magnitude breaks for each
contour curve. Disregarded if ’square = FALSE’.

brks2 Vector of magnitude breaks where to draw contour curves for the array provided
in ’contours’ or if ’square = FALSE’.

contour_lwd Line width of the contour curves provided via ’contours’ and ’brks2’, or if
’square = FALSE’.

contour_color Line color of the contour curves provided via ’contours’ and ’brks2’, or if
’square = FALSE’.

contour_lty Line type of the contour curves. Takes 1 (solid) by default. See help on ’lty’ in
par() for other accepted values.

contour_draw_label

A logical value indicating whether to draw the contour labels or not. The default
value is TRUE.

contour_label_scale

Scale factor for the superimposed labels when drawing contour levels.

dots Array of same dimensions as ’var’ or with dimensions c(n, dim(var)), where n
is the number of dot/symbol layers to add to the plot. A value of TRUE at a grid
cell will draw a dot/symbol on the corresponding square of the plot. By default
all layers provided in ’dots’ are plotted with dots, but a symbol can be specified
for each of the layers via the parameter ’dot_symbol’.

dot_symbol Single character/number or vector of characters/numbers that correspond to each
of the symbol layers specified in parameter ’dots’. If a single value is specified,
it will be applied to all the layers in ’dots’. Takes 15 (centered square) by default.
See ’pch’ in par() for additional accepted options.

dot_size Scale factor for the dots/symbols to be plotted, specified in ’dots’. If a single
value is specified, it will be applied to all layers in ’dots’. Takes 1 by default.

arr_subsamp Subsampling factor to select a subset of arrows in ’varu’ and ’varv’ to be drawn.
Only one out of arr_subsamp arrows will be drawn. Takes 1 by default.

arr_scale Scale factor for drawn arrows from ’varu’ and ’varv’. Takes 1 by default.

arr_ref_len Length of the refence arrow to be drawn as legend at the bottom of the figure (in
same units as ’varu’ and ’varv’, only affects the legend for the wind or variable
in these arrays). Defaults to 15.

arr_units Units of ’varu’ and ’varv’, to be drawn in the legend. Takes ’m/s’ by default.



PlotEquiMap 95

arr_scale_shaft

Parameter for the scale of the shaft of the arrows (which also depend on the
number of figures and the arr_scale parameter). Defaults to 1.

arr_scale_shaft_angle

Parameter for the scale of the angle of the shaft of the arrows (which also depend
on the number of figure and the arr_scale parameter). Defaults to 1.

axelab Whether to draw longitude and latitude axes or not. TRUE by default.

labW Whether to label the longitude axis with a ’W’ instead of minus for negative
values. Defaults to FALSE.

lab_dist_x A numeric of the distance of the longitude labels to the box borders. The default
value is NULL and is automatically adjusted by the function.

lab_dist_y A numeric of the distance of the latitude labels to the box borders. The default
value is NULL and is automatically adjusted by the function.

degree_sym A logical indicating whether to include degree symbol (30° N) or not (30N;
default).

intylat Interval between latitude ticks on y-axis, in degrees. Defaults to 20.

intxlon Interval between latitude ticks on x-axis, in degrees. Defaults to 20.
axes_tick_scale

Scale factor for the tick lines along the longitude and latitude axes.
axes_label_scale

Scale factor for the labels along the longitude and latitude axes.

drawleg Whether to plot a color bar (legend, key) or not. Defaults to TRUE. It is not
possible to plot the colour bar if ’add = TRUE’. Use ColorBar() and the return
values of PlotEquiMap() instead.

boxlim Limits of a box to be added to the plot, in degrees: c(x1, y1, x2, y2). A list with
multiple box specifications can also be provided.

boxcol Colour of the box lines. A vector with a colour for each of the boxes is also
accepted. Defaults to ’purple2’.

boxlwd Line width of the box lines. A vector with a line width for each of the boxes is
also accepted. Defaults to 5.

margin_scale Scale factor for the margins around the map plot, with the format c(y1, x1,
y2, x2). Defaults to rep(1, 4). If drawleg = TRUE, then margin_scale[1] is
subtracted 1 unit.

title_scale Scale factor for the figure top title. Defaults to 1.

numbfig Number of figures in the layout the plot will be put into. A higher numbfig will
result in narrower margins and smaller labels, axe labels, ticks, thinner lines, ...
Defaults to 1.

fileout File where to save the plot. If not specified (default) a graphics device will pop
up. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff.

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.



96 PlotEquiMap

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.sub cin col.axis col.lab col.main col.sub cra crt csi cxy
err family fg font font.axis font.lab font.main font.sub lend lheight ljoin lmitre
mex mfcol mfrow mfg mkh omd omi page pch pin plt pty smo srt tcl usr xaxp
xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.

Value

brks Breaks used for colouring the map (and legend if drawleg = TRUE).

cols Colours used for colouring the map (and legend if drawleg = TRUE). Always of
length length(brks) - 1.

col_inf Colour used to draw the lower triangle end in the colour bar (NULL if not drawn
at all).

col_sup Colour used to draw the upper triangle end in the colour bar (NULL if not drawn
at all).

Examples

# See examples on Load() to understand the first lines in this example
## Not run:

data_path <- system.file('sample_data', package = 's2dv')
expA <- list(name = 'experiment', path = file.path(data_path,

'model/$EXP_NAME$/$STORE_FREQ$_mean/$VAR_NAME$_3hourly',
'$VAR_NAME$_$START_DATE$.nc'))

obsX <- list(name = 'observation', path = file.path(data_path,
'$OBS_NAME$/$STORE_FREQ$_mean/$VAR_NAME$',
'$VAR_NAME$_$YEAR$$MONTH$.nc'))

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(expA), list(obsX), startDates,

leadtimemin = 1, leadtimemax = 4, output = 'lonlat',
latmin = 27, latmax = 48, lonmin = -12, lonmax = 40)

## End(Not run)

PlotEquiMap(sampleData$mod[1, 1, 1, 1, , ], sampleData$lon, sampleData$lat,
toptitle = 'Predicted sea surface temperature for Nov 1960 from 1st Nov',
sizetit = 0.5)



PlotLayout 97

PlotLayout Arrange and Fill Multi-Pannel Layouts With Optional Colour Bar

Description

This function takes an array or list of arrays and loops over each of them to plot all the sub-arrays
they contain on an automatically generated multi-pannel layout. A different plot function (not
necessarily from s2dv) can be applied over each of the provided arrays. The input dimensions of
each of the functions have to be specified, either with the names or the indices of the corresponding
input dimensions. It is possible to draw a common colour bar at any of the sides of the multi-
pannel for all the s2dv plots that use a colour bar. Common plotting arguments for all the arrays
in ’var’ can be specified via the ’...’ parameter, and specific plotting arguments for each array can
be fully adjusted via ’special_args’. It is possible to draw titles for each of the figures, layout rows,
layout columns and for the whole figure. A number of parameters is provided in order to adjust the
position, size and colour of the components. Blank cells can be forced to appear and later be filled
in manually with customized plots.
This function pops up a blank new device and fills it in, so it cannot be nested in complex layouts.

Usage

PlotLayout(
fun,
plot_dims,
var,
...,
special_args = NULL,
nrow = NULL,
ncol = NULL,
toptitle = NULL,
row_titles = NULL,
col_titles = NULL,
bar_scale = 1,
title_scale = 1,
title_margin_scale = 1,
title_left_shift_scale = 1,
subtitle_scale = 1,
subtitle_margin_scale = 1,
brks = NULL,
cols = NULL,
drawleg = "S",
titles = NULL,
subsampleg = NULL,
bar_limits = NULL,
triangle_ends = NULL,
col_inf = NULL,
col_sup = NULL,
color_fun = clim.colors,



98 PlotLayout

draw_bar_ticks = TRUE,
draw_separators = FALSE,
triangle_ends_scale = 1,
bar_extra_labels = NULL,
units = NULL,
units_scale = 1,
bar_label_scale = 1,
bar_tick_scale = 1,
bar_extra_margin = rep(0, 4),
bar_left_shift_scale = 1,
bar_label_digits = 4,
extra_margin = rep(0, 4),
fileout = NULL,
width = NULL,
height = NULL,
size_units = "in",
res = 100,
close_device = TRUE

)

Arguments

fun Plot function (or name of the function) to be called on the arrays provided in
’var’. If multiple arrays are provided in ’var’, a vector of as many function
names (character strings!) can be provided in ’fun’, one for each array in ’var’.

plot_dims Numeric or character string vector with identifiers of the input plot dimen-
sions of the plot function specified in ’fun’. If character labels are provided,
names(dim(var)) or attr(’dimensions’, var) will be checked to locate the dimen-
sions. As many plots as prod(dim(var)[-plot_dims]) will be generated. If mul-
tiple arrays are provided in ’var’, ’plot_dims’ can be sent a list with a vector of
plot dimensions for each. If a single vector is provided, it will be used for all the
arrays in ’var’.

var Multi-dimensional array with at least the dimensions expected by the specified
plot function in ’fun’. The dimensions reqired by the function must be spec-
ified in ’plot_dims’. The dimensions can be disordered and will be reordered
automatically. Dimensions can optionally be labelled in order to refer to them
with names in ’plot_dims’. All the available plottable sub-arrays will be auto-
matically plotted and arranged in consecutive cells of an automatically arranged
layout. A list of multiple (super-)arrays can be specified. The process will be
repeated for each of them, by default applying the same plot function to all of
them or, if properly specified in ’fun’, a different plot function will be applied to
each of them. NAs can be passed to the list: a NA will yield a blank cell in the
layout, which can be populated after (see .SwitchToFigure).

... Parameters to be sent to the plotting function ’fun’. If multiple arrays are pro-
vided in ’var’ and multiple functions are provided in ’fun’, the parameters pro-
vided through . . . will be sent to all the plot functions, as common parameters.
To specify concrete arguments for each of the plot functions see parameter ’spe-
cial_args’.



PlotLayout 99

special_args List of sub-lists, each sub-list having specific extra arguments for each of the plot
functions provided in ’fun’. If you want to fix a different value for each plot in
the layout you can do so by a) splitting your array into a list of sub-arrays (each
with the data for one plot) and providing it as parameter ’var’, b) providing a list
of named sub-lists in ’special_args’, where the names of each sub-list match the
names of the parameters to be adjusted, and each value in a sub-list contains the
value of the corresponding parameter.

nrow Numeric value to force the number of rows in the automatically generated lay-
out. If higher than the required, this will yield blank cells in the layout (which
can then be populated). If lower than the required the function will stop. By de-
fault it is configured to arrange the layout in a shape as square as possible. Blank
cells can be manually populated after with customized plots (see SwitchTofig-
ure).

ncol Numeric value to force the number of columns in the automatically generated
layout. If higher than the required, this will yield blank cells in the layout (which
can then be populated). If lower than the required the function will stop. By de-
fault it is configured to arrange the layout in a shape as square as possible. Blank
cells can be manually populated after with customized plots (see SwitchTofig-
ure).

toptitle Topt title for the multi-pannel. Blank by default.

row_titles Character string vector with titles for each of the rows in the layout. Blank by
default.

col_titles Character string vector with titles for each of the columns in the layout. Blank
by default.

bar_scale Scale factor for the common colour bar. Takes 1 by default.

title_scale Scale factor for the multi-pannel title. Takes 1 by default.
title_margin_scale

Scale factor for the margins surrounding the top title. Takes 1 by default.
title_left_shift_scale

When plotting row titles, a shift is added to the horizontal positioning of the top
title in order to center it to the region of the figures (without taking row titles
into account). This shift can be reduced. A value of 0 will remove the shift
completely, centering the title to the total width of the device. This parameter
will be disregarded if no ’row_titles’ are provided.

subtitle_scale Scale factor for the row titles and column titles (specified in ’row_titles’ and
’col_titles’). Takes 1 by default.

subtitle_margin_scale

Scale factor for the margins surrounding the subtitles. Takes 1 by default.
brks, cols, bar_limits, triangle_ends

Usually only providing ’brks’ is enough to generate the desired colour bar.
These parameters allow to define n breaks that define n - 1 intervals to clas-
sify each of the values in ’var’. The corresponding grid cell of a given value in
’var’ will be coloured in function of the interval it belongs to. These parameters
are sent to ColorBar() to generate the breaks and colours. Additional colours
for values beyond the limits of the colour bar are also generated and applied to



100 PlotLayout

the plot if ’bar_limits’ or ’brks’ and ’triangle_ends’ are properly provided to do
so. See ?ColorBar for a full explanation.

drawleg Where to draw the common colour bar. Can take values TRUE, FALSE or:
’up’, ’u’, ’U’, ’top’, ’t’, ’T’, ’north’, ’n’, ’N’
’down’, ’d’, ’D’, ’bottom’, ’b’, ’B’, ’south’, ’s’, ’S’ (default)
’right’, ’r’, ’R’, ’east’, ’e’, ’E’
’left’, ’l’, ’L’, ’west’, ’w’, ’W’

titles Character string vector with titles for each of the figures in the multi-pannel,
from top-left to bottom-right. Blank by default.

col_inf, col_sup

Colour identifiers to colour the values in ’var’ that go beyond the extremes of
the colour bar and to colour NA values, respectively. ’colNA’ takes ’white’ by
default. ’col_inf’ and ’col_sup’ will take the value of ’colNA’ if not specified.
See ?ColorBar for a full explanation on ’col_inf’ and ’col_sup’.

color_fun, subsampleg, bar_extra_labels, draw_bar_ticks, draw_separators, triangle_ends_scale, bar_label_digits, bar_label_scale, units_scale, bar_tick_scale, bar_extra_margin

Set of parameters to control the visual aspect of the drawn colour bar. See
?ColorBar for a full explanation.

units Title at the top of the colour bar, most commonly the units of the variable pro-
vided in parameter ’var’.

bar_left_shift_scale

When plotting row titles, a shift is added to the horizontal positioning of the
colour bar in order to center it to the region of the figures (without taking row
titles into account). This shift can be reduced. A value of 0 will remove the
shift completely, centering the colour bar to the total width of the device. This
parameter will be disregarded if no ’row_titles’ are provided.

extra_margin Extra margins to be added around the layout, in the format c(y1, x1, y2, x2).
The units are margin lines. Takes rep(0, 4) by default.

fileout File where to save the plot. If not specified (default) a graphics device will pop
up. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff.

width Width in inches of the multi-pannel. 7 by default, or 11 if ’fielout’ has been
specified.

height Height in inches of the multi-pannel. 7 by default, or 11 if ’fileout’ has been
specified.

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

close_device Whether to close the graphics device after plotting the layout and a ’fileout’ has
been specified. This is useful to avoid closing the device when saving the layout
into a file and willing to add extra elements or figures. Takes TRUE by default.
Disregarded if no ’fileout’ has been specified.

Value

brks Breaks used for colouring the map (and legend if drawleg = TRUE).



PlotMatrix 101

cols Colours used for colouring the map (and legend if drawleg = TRUE). Always of
length length(brks) - 1.

col_inf Colour used to draw the lower triangle end in the colour bar (NULL if not drawn
at all).

col_sup Colour used to draw the upper triangle end in the colour bar (NULL if not drawn
at all).

layout_matrix Underlying matrix of the layout. Useful to later set any of the layout cells as
current figure to add plot elements. See .SwitchToFigure.

Examples

# See examples on Load() to understand the first lines in this example
## Not run:

data_path <- system.file('sample_data', package = 's2dv')
expA <- list(name = 'experiment', path = file.path(data_path,

'model/$EXP_NAME$/$STORE_FREQ$_mean/$VAR_NAME$_3hourly',
'$VAR_NAME$_$START_DATE$.nc'))

obsX <- list(name = 'observation', path = file.path(data_path,
'$OBS_NAME$/$STORE_FREQ$_mean/$VAR_NAME$',
'$VAR_NAME$_$YEAR$$MONTH$.nc'))

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(expA), list(obsX), startDates,

leadtimemin = 1, leadtimemax = 4, output = 'lonlat',
latmin = 27, latmax = 48, lonmin = -12, lonmax = 40)

## End(Not run)

PlotLayout(PlotEquiMap, c('lat', 'lon'), sampleData$mod[1, , 1, 1, , ],
sampleData$lon, sampleData$lat,
toptitle = 'Predicted tos for Nov 1960 from 1st Nov',
titles = paste('Member', 1:15))

PlotMatrix Function to convert any numerical table to a grid of coloured squares.

Description

This function converts a numerical data matrix into a coloured grid. It is useful for a slide or article
to present tabular results as colors instead of numbers.

Usage

PlotMatrix(
var,
brks = NULL,



102 PlotMatrix

cols = NULL,
toptitle = NULL,
title.color = "royalblue4",
xtitle = NULL,
ytitle = NULL,
xlabels = NULL,
xvert = FALSE,
ylabels = NULL,
line = 3,
figure.width = 1,
legend = TRUE,
legend.width = 0.15,
xlab_dist = NULL,
ylab_dist = NULL,
fileout = NULL,
size_units = "px",
res = 100,
...

)

Arguments

var A numerical matrix containing the values to be displayed in a colored image.

brks A vector of the color bar intervals. The length must be one more than the pa-
rameter ’cols’. Use ColorBar() to generate default values.

cols A vector of valid color identifiers for color bar. The length must be one less than
the parameter ’brks’. Use ColorBar() to generate default values.

toptitle A string of the title of the grid. Set NULL as default.

title.color A string of valid color identifier to decide the title color. Set "royalblue4" as
default.

xtitle A string of title of the x-axis. Set NULL as default.

ytitle A string of title of the y-axis. Set NULL as default.

xlabels A vector of labels of the x-axis. The length must be length of the column of pa-
rameter ’var’. Set the sequence from 1 to the length of the column of parameter
’var’ as default.

xvert A logical value to decide whether to place x-axis labels vertically. Set FALSE
as default, which keeps the labels horizontally.

ylabels A vector of labels of the y-axis The length must be length of the row of parameter
’var’. Set the sequence from 1 to the length of the row of parameter ’var’ as
default.

line An integer specifying the distance between the title of the x-axis and the x-axis.
Set 3 as default. Adjust if the x-axis labels are long.

figure.width A positive number as a ratio adjusting the width of the grids. Set 1 as default.

legend A logical value to decide to draw the grid color legend or not. Set TRUE as
default.



PlotSection 103

legend.width A number between 0 and 0.5 to adjust the legend width. Set 0.15 as default.

xlab_dist A number specifying the distance between the x labels and the x axis. If not
specified, it equals to -1 - (nrow(var) / 10 - 1).

ylab_dist A number specifying the distance between the y labels and the y axis. If not
specified, it equals to 0.5 - ncol(var) / 10.

fileout A string of full directory path and file name indicating where to save the plot. If
not specified (default), a graphics device will pop up.

size_units A string indicating the units of the size of the device (file or window) to plot in.
Set ’px’ as default. See ?Devices and the creator function of the corresponding
device.

res A positive number indicating resolution of the device (file or window) to plot in.
See ?Devices and the creator function of the corresponding device.

... The additional parameters to be passed to function ColorBar() in s2dv for color
legend creation.

Value

A figure in popup window by default, or saved to the specified path.

Examples

#Example with random data
PlotMatrix(var = matrix(rnorm(n = 120, mean = 0.3), 10, 12),

cols = c('white','#fef0d9','#fdd49e','#fdbb84','#fc8d59',
'#e34a33','#b30000', '#7f0000'),

brks = c(-1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1),
toptitle = "Mean Absolute Error",
xtitle = "Forecast time (month)", ytitle = "Start date",
xlabels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul",

"Aug", "Sep", "Oct", "Nov", "Dec"))

PlotSection Plots A Vertical Section

Description

Plot a (longitude,depth) or (latitude,depth) section.

Usage

PlotSection(
var,
horiz,
depth,
toptitle = "",
sizetit = 1,



104 PlotSection

units = "",
brks = NULL,
cols = NULL,
axelab = TRUE,
intydep = 200,
intxhoriz = 20,
drawleg = TRUE,
fileout = NULL,
width = 8,
height = 5,
size_units = "in",
res = 100,
...

)

Arguments

var Matrix to plot with (longitude/latitude, depth) dimensions.

horiz Array of longitudes or latitudes.

depth Array of depths.

toptitle Title, optional.

sizetit Multiplicative factor to increase title size, optional.

units Units, optional.

brks Colour levels, optional.

cols List of colours, optional.

axelab TRUE/FALSE, label the axis. Default = TRUE.

intydep Interval between depth ticks on y-axis. Default: 200m.

intxhoriz Interval between longitude/latitude ticks on x-axis.
Default: 20deg.

drawleg Draw colorbar. Default: TRUE.

fileout Name of output file. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff.
Default = NULL

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.lab cex.sub cin col.axis col.lab col.main col.sub cra crt



PlotStereoMap 105

csi cxy err family fg fig fin font font.axis font.lab font.main font.sub lend lheight
ljoin lmitre lty lwd mex mfcol mfrow mfg mkh oma omd omi page pch pin plt
pty smo srt tcl usr xaxp xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.

Examples

sampleData <- s2dv::sampleDepthData
PlotSection(sampleData$mod[1, 1, 1, 1, , ], sampleData$lat, sampleData$depth,

toptitle = 'temperature 1995-11 member 0')

PlotStereoMap Maps A Two-Dimensional Variable On A Polar Stereographic Projec-
tion

Description

Map longitude-latitude array (on a regular rectangular or gaussian grid) on a polar stereographic
world projection with coloured grid cells. Only the region within a specified latitude interval is
displayed. A colour bar (legend) can be plotted and adjusted. It is possible to draw superimposed
dots, symbols, boxes, contours, and arrows. A number of options is provided to adjust the position,
size and colour of the components. This plot function is compatible with figure layouts if colour
bar is disabled.

Usage

PlotStereoMap(
var,
lon,
lat,
varu = NULL,
varv = NULL,
latlims = c(60, 90),
toptitle = NULL,
sizetit = NULL,
units = NULL,
brks = NULL,
cols = NULL,
bar_limits = NULL,
triangle_ends = NULL,
col_inf = NULL,
col_sup = NULL,
colNA = NULL,
color_fun = clim.palette(),
filled.continents = FALSE,
coast_color = NULL,
coast_width = 1,
contours = NULL,



106 PlotStereoMap

brks2 = NULL,
contour_lwd = 0.5,
contour_color = "black",
contour_lty = 1,
contour_label_draw = TRUE,
contour_label_scale = 0.6,
dots = NULL,
dot_symbol = 4,
dot_size = 0.8,
intlat = 10,
arr_subsamp = floor(length(lon)/30),
arr_scale = 1,
arr_ref_len = 15,
arr_units = "m/s",
arr_scale_shaft = 1,
arr_scale_shaft_angle = 1,
drawleg = TRUE,
subsampleg = NULL,
bar_extra_labels = NULL,
draw_bar_ticks = TRUE,
draw_separators = FALSE,
triangle_ends_scale = 1,
bar_label_digits = 4,
bar_label_scale = 1,
units_scale = 1,
bar_tick_scale = 1,
bar_extra_margin = rep(0, 4),
boxlim = NULL,
boxcol = "purple2",
boxlwd = 5,
margin_scale = rep(1, 4),
title_scale = 1,
numbfig = NULL,
fileout = NULL,
width = 6,
height = 5,
size_units = "in",
res = 100,
...

)

Arguments

var Array with the values at each cell of a grid on a regular rectangular or gaus-
sian grid. The array is expected to have two dimensions: c(latitude, longitude).
Longitudes can be in ascending or descending order and latitudes in any or-
der. It can contain NA values (coloured with ’colNA’). Arrays with dimensions
c(longitude, latitude) will also be accepted but ’lon’ and ’lat’ will be used to
disambiguate so this alternative is not appropriate for square arrays.



PlotStereoMap 107

lon Numeric vector of longitude locations of the cell centers of the grid of ’var’, in
ascending or descending order (same as ’var’). Expected to be regularly spaced,
within either of the ranges [-180, 180] or [0, 360]. Data for two adjacent re-
gions split by the limits of the longitude range can also be provided, e.g. lon =
c(0:50,300:360) (’var’ must be provided consitently).

lat Numeric vector of latitude locations of the cell centers of the grid of ’var’, in
any order (same as ’var’). Expected to be from a regular rectangular or gaussian
grid, within the range [-90, 90].

varu Array of the zonal component of wind/current/other field with the same dimen-
sions as ’var’.

varv Array of the meridional component of wind/current/other field with the same
dimensions as ’var’.

latlims Latitudinal limits of the figure.
Example : c(60, 90) for the North Pole
c(-90,-60) for the South Pole

toptitle Top title of the figure, scalable with parameter ’title_scale’.
sizetit Scale factor for the figure top title provided in parameter ’toptitle’. Deprecated.

Use ’title_scale’ instead.
units Title at the top of the colour bar, most commonly the units of the variable pro-

vided in parameter ’var’.
brks, cols, bar_limits, triangle_ends

Usually only providing ’brks’ is enough to generate the desired colour bar.
These parameters allow to define n breaks that define n - 1 intervals to clas-
sify each of the values in ’var’. The corresponding grid cell of a given value in
’var’ will be coloured in function of the interval it belongs to. These parameters
are sent to ColorBar() to generate the breaks and colours. Additional colours
for values beyond the limits of the colour bar are also generated and applied to
the plot if ’bar_limits’ or ’brks’ and ’triangle_ends’ are properly provided to do
so. See ?ColorBar for a full explanation.

col_inf, col_sup, colNA

Colour identifiers to colour the values in ’var’ that go beyond the extremes of
the colour bar and to colour NA values, respectively. ’colNA’ takes attr(cols,
’na_color’) if available by default, where cols is the parameter ’cols’ if provided
or the vector of colors returned by ’color_fun’. If not available, it takes ’pink’ by
default. ’col_inf’ and ’col_sup’ will take the value of ’colNA’ if not specified.
See ?ColorBar for a full explanation on ’col_inf’ and ’col_sup’.

color_fun, subsampleg, bar_extra_labels, draw_bar_ticks, draw_separators, triangle_ends_scale, bar_label_digits, bar_label_scale, units_scale, bar_tick_scale, bar_extra_margin

Set of parameters to control the visual aspect of the drawn colour bar. See
?ColorBar for a full explanation.

filled.continents

Colour to fill in drawn projected continents. Takes the value gray(0.5) by default.
If set to FALSE, continents are not filled in.

coast_color Colour of the coast line of the drawn projected continents. Takes the value
gray(0.5) by default.

coast_width Line width of the coast line of the drawn projected continents. Takes the value
1 by default.



108 PlotStereoMap

contours Array of same dimensions as ’var’ to be added to the plot and displayed with
contours. Parameter ’brks2’ is required to define the magnitude breaks for each
contour curve.

brks2 A numeric value or vector of magnitude breaks where to draw contour curves
for the array provided in ’contours’. If it is a number, it represents the number
of breaks (n) that defines (n - 1) intervals to classify ’contours’.

contour_lwd Line width of the contour curves provided via ’contours’ and ’brks2’. The de-
fault value is 0.5.

contour_color Line color of the contour curves provided via ’contours’ and ’brks2’.

contour_lty Line type of the contour curves. Takes 1 (solid) by default. See help on ’lty’ in
par() for other accepted values.

contour_label_draw

A logical value indicating whether to draw the contour labels (TRUE) or not
(FALSE) when ’contours’ is used. The default value is TRUE.

contour_label_scale

Scale factor for the superimposed labels when drawing contour levels. The de-
fault value is 0.6.

dots Array of same dimensions as ’var’ or with dimensions c(n, dim(var)), where n
is the number of dot/symbol layers to add to the plot. A value of TRUE at a grid
cell will draw a dot/symbol on the corresponding square of the plot. By default
all layers provided in ’dots’ are plotted with dots, but a symbol can be specified
for each of the layers via the parameter ’dot_symbol’.

dot_symbol Single character/number or vector of characters/numbers that correspond to each
of the symbol layers specified in parameter ’dots’. If a single value is specified,
it will be applied to all the layers in ’dots’. Takes 15 (centered square) by default.
See ’pch’ in par() for additional accepted options.

dot_size Scale factor for the dots/symbols to be plotted, specified in ’dots’. If a single
value is specified, it will be applied to all layers in ’dots’. Takes 1 by default.

intlat Interval between latitude lines (circles), in degrees. Defaults to 10.

arr_subsamp A number as subsampling factor to select a subset of arrows in ’varu’ and ’varv’
to be drawn. Only one out of arr_subsamp arrows will be drawn. The default
value is 1.

arr_scale A number as scale factor for drawn arrows from ’varu’ and ’varv’. The default
value is 1.

arr_ref_len A number of the length of the refence arrow to be drawn as legend at the bottom
of the figure (in same units as ’varu’ and ’varv’, only affects the legend for the
wind or variable in these arrays). The default value is 15.

arr_units Units of ’varu’ and ’varv’, to be drawn in the legend. Takes ’m/s’ by default.
arr_scale_shaft

A number for the scale of the shaft of the arrows (which also depend on the
number of figures and the arr_scale parameter). The default value is 1.

arr_scale_shaft_angle

A number for the scale of the angle of the shaft of the arrows (which also depend
on the number of figure and the arr_scale parameter). The default value is 1.



PlotStereoMap 109

drawleg Whether to plot a color bar (legend, key) or not. Defaults to TRUE.

boxlim Limits of a box to be added to the plot, in degrees: c(x1, y1, x2, y2). A list with
multiple box specifications can also be provided.

boxcol Colour of the box lines. A vector with a colour for each of the boxes is also
accepted. Defaults to ’purple2’.

boxlwd Line width of the box lines. A vector with a line width for each of the boxes is
also accepted. Defaults to 5.

margin_scale Scale factor for the margins to be added to the plot, with the format c(y1, x1, y2,
x2). Defaults to rep(1, 4). If drawleg = TRUE, margin_scale[1] is subtracted 1
unit.

title_scale Scale factor for the figure top title. Defaults to 1.

numbfig Number of figures in the layout the plot will be put into. A higher numbfig will
result in narrower margins and smaller labels, axe labels, ticks, thinner lines, ...
Defaults to 1.

fileout File where to save the plot. If not specified (default) a graphics device will pop
up. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff.

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.sub cin col.axis col.lab col.main col.sub cra crt csi cxy
err family fg font font.axis font.lab font.main font.sub lend lheight ljoin lmitre
mex mfcol mfrow mfg mkh omd omi page pch pin plt pty smo srt tcl usr xaxp
xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.

Value

brks Breaks used for colouring the map (and legend if drawleg = TRUE).

cols Colours used for colouring the map (and legend if drawleg = TRUE). Always of
length length(brks) - 1.

col_inf Colour used to draw the lower triangle end in the colour bar (NULL if not drawn
at all).

col_sup Colour used to draw the upper triangle end in the colour bar (NULL if not drawn
at all).



110 PlotVsLTime

Examples

data <- matrix(rnorm(100 * 50), 100, 50)
x <- seq(from = 0, to = 360, length.out = 100)
y <- seq(from = -90, to = 90, length.out = 50)
PlotStereoMap(data, x, y, latlims = c(60, 90), brks = 50,

toptitle = "This is the title")

PlotVsLTime Plot a score along the forecast time with its confidence interval

Description

Plot the correlation (Corr()), the root mean square error (RMS()) between the forecast values
and their observational counterpart, the slope of their trend (Trend()), the InterQuartile range,
maximum-mininum, standard deviation or median absolute Deviation of the ensemble members
(Spread()), or the ratio between the ensemble spread and the RMSE of the ensemble mean (RatioSDRMS())
along the forecast time for all the input experiments on the same figure with their confidence inter-
vals.

Usage

PlotVsLTime(
var,
toptitle = "",
ytitle = "",
monini = 1,
freq = 12,
nticks = NULL,
limits = NULL,
listexp = c("exp1", "exp2", "exp3"),
listobs = c("obs1", "obs2", "obs3"),
biglab = FALSE,
hlines = NULL,
leg = TRUE,
siglev = FALSE,
sizetit = 1,
show_conf = TRUE,
fileout = NULL,
width = 8,
height = 5,
size_units = "in",
res = 100,
...

)



PlotVsLTime 111

Arguments

var Matrix containing any Prediction Score with dimensions:
(nexp/nmod, 3/4 ,nltime)
or (nexp/nmod, nobs, 3/4 ,nltime).

toptitle Main title, optional.

ytitle Title of Y-axis, optional.

monini Starting month between 1 and 12. Default = 1.

freq 1 = yearly, 12 = monthly, 4 = seasonal, ... Default = 12.

nticks Number of ticks and labels on the x-axis, optional.

limits c(lower limit, upper limit): limits of the Y-axis, optional.

listexp List of experiment names, optional.

listobs List of observation names, optional.

biglab TRUE/FALSE for presentation/paper plot. Default = FALSE.

hlines c(a,b, ..) Add horizontal black lines at Y-positions a,b, ...
Default = NULL.

leg TRUE/FALSE if legend should be added or not to the plot. Default = TRUE.

siglev TRUE/FALSE if significance level should replace confidence interval.
Default = FALSE.

sizetit Multiplicative factor to change title size, optional.

show_conf TRUE/FALSE to show/not confidence intervals for input variables.

fileout Name of output file. Extensions allowed: eps/ps, jpeg, png, pdf, bmp and tiff.
The default value is NULL.

width File width, in the units specified in the parameter size_units (inches by default).
Takes 8 by default.

height File height, in the units specified in the parameter size_units (inches by default).
Takes 5 by default.

size_units Units of the size of the device (file or window) to plot in. Inches (’in’) by default.
See ?Devices and the creator function of the corresponding device.

res Resolution of the device (file or window) to plot in. See ?Devices and the creator
function of the corresponding device.

... Arguments to be passed to the method. Only accepts the following graphical
parameters:
adj ann ask bg bty cex.sub cin col.axis col.lab col.main col.sub cra crt csi cxy err
family fg fig font font.axis font.lab font.main font.sub lheight ljoin lmitre mar
mex mfcol mfrow mfg mkh oma omd omi page pch plt smo srt tck tcl usr xaxp
xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog
For more information about the parameters see ‘par‘.



112 ProbBins

Details

Examples of input:
Model and observed output from Load() then Clim() then Ano() then Smoothing():
(nmod, nmemb, nsdate, nltime) and (nobs, nmemb, nsdate, nltime)
then averaged over the members
Mean1Dim(var_exp/var_obs,posdim = 2):
(nmod, nsdate, nltime) and (nobs, nsdate, nltime)
then passed through
Corr(exp,obs,posloop = 1,poscor = 2) or
RMS(exp,obs,posloop = 1,posRMS = 2):
(nmod, nobs, 3, nltime)
would plot the correlations or RMS between each exp & each obs as a function of the forecast time.

Examples

# Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
runmean_months <- 12
smooth_ano_exp <- Smoothing(data = ano_exp, runmeanlen = runmean_months)
smooth_ano_obs <- Smoothing(data = ano_obs, runmeanlen = runmean_months)
dim_to_mean <- 'member' # mean along members
required_complete_row <- 'ftime' # discard startdates for which there are NA leadtimes
leadtimes_per_startdate <- 60
corr <- Corr(MeanDims(smooth_ano_exp, dim_to_mean),

MeanDims(smooth_ano_obs, dim_to_mean),
comp_dim = required_complete_row,
limits = c(ceiling((runmean_months + 1) / 2),

leadtimes_per_startdate - floor(runmean_months / 2)))
# Combine corr results for plotting
corr_combine <- abind::abind(corr$conf.lower, corr$corr, corr$conf.upper, corr$p.val, along = 0)
corr_combine <- Reorder(corr_combine, c(2, 3, 1, 4))

PlotVsLTime(corr_combine, toptitle = "correlations", ytitle = "correlation",
monini = 11, limits = c(-1, 2), listexp = c('CMIP5 IC3'),
listobs = c('ERSST'), biglab = FALSE, hlines = c(-1, 0, 1))

ProbBins Compute probabilistic information of a forecast relative to a threshold
or a quantile

Description

Compute probabilistic bins of a set of forecast years (’fcyr’) relative to the forecast climatology
over the whole period of anomalies, optionally excluding the selected forecast years (’fcyr’) or the
forecast year for which the probabilistic bins are being computed (see ’compPeriod’).



ProbBins 113

Usage

ProbBins(
data,
thr,
fcyr = "all",
time_dim = "sdate",
memb_dim = "member",
quantile = TRUE,
compPeriod = "Full period",
ncores = NULL

)

Arguments

data An numeric array of anomalies with the dimensions ’time_dim’ and ’memb_dim’
at least. It can be generated by Ano().

thr A numeric vector used as the quantiles (if ’quantile’ is TRUE) or thresholds (if
’quantile’ is FALSE) to bin the anomalies. If it is quantile, it must be within [0,
1].

fcyr A numeric vector of the indices of the forecast years (i.e., time_dim) to compute
the probabilistic bins for, or ’all’ to compute the bins for all the years. E.g.,
c(1:5), c(1, 4), 4, or ’all’. The default value is ’all’.

time_dim A character string indicating the dimension along which to compute the proba-
bilistic bins. The default value is ’sdate’.

memb_dim A character string indicating the name of the member dimension or the dimen-
sion to be merged with ’time_dim’ for probabilistic calculation. The default
value is ’member’.

quantile A logical value indicating if the thresholds (’thr’) are quantiles (TRUE) or the
absolute thresholds of the bins (FALSE). The default value is TRUE.

compPeriod A character string referring to three computation options:
"Full period": The probabilities are computed based on ’data’;
"Without fcyr": The probabilities are computed based on ’data’ with all ’fcyr’
removed;
"Cross-validation": The probabilities are computed based on leave-one-out cross-
validation.
The default value is "Full period".

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A numeric array of probabilistic information with dimensions:
c(bin = length of ’thr’ + 1, time_dim = length of ’fcyr’, memb_dim, the rest of dimensions of ’data’)
The values along the ’bin’ dimension take values 0 or 1 depending on which of the ’thr’ + 1 cathe-
gories the forecast or observation at the corresponding grid point, time step, member and start date
belongs to.



114 ProjectField

Examples

clim <- Clim(sampleMap$mod, sampleMap$obs)
ano_exp <- Ano(sampleMap$mod, clim$clim_exp)
PB <- ProbBins(ano_exp, fcyr = 3, thr = c(1/3, 2/3), quantile = TRUE)

ProjectField Project anomalies onto modes of variability

Description

Project anomalies onto modes of variability to get the temporal evolution of the EOF mode selected.
It returns principal components (PCs) by area-weighted projection onto EOF pattern (from EOF())
or REOF pattern (from REOF() or EuroAtlanticTC()). The calculation removes NA and returns
NA if the whole spatial pattern is NA.

Usage

ProjectField(
ano,
eof,
time_dim = "sdate",
space_dim = c("lat", "lon"),
mode = NULL,
ncores = NULL

)

Arguments

ano A numerical array of anomalies with named dimensions. The dimensions must
have at least ’time_dim’ and ’space_dim’. It can be generated by Ano().

eof A list that contains at least ’EOFs’ or ’REOFs’ and ’wght’, which are both ar-
rays. ’EOFs’ or ’REOFs’ must have dimensions ’mode’ and ’space_dim’ at
least. ’wght’ has dimensions space_dim. It can be generated by EOF() or
REOF().

time_dim A character string indicating the name of the time dimension of ’ano’. The
default value is ’sdate’.

space_dim A vector of two character strings. The first is the dimension name of latitude of
’ano’ and the second is the dimension name of longitude of ’ano’. The default
value is c(’lat’, ’lon’).

mode An integer of the variability mode number in the EOF to be projected on. The
default value is NULL, which means all the modes of ’eof’ is calculated.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.



RandomWalkTest 115

Value

A numerical array of the principal components in the verification format. The dimensions are the
same as ’ano’ except ’space_dim’.

See Also

EOF, NAO, PlotBoxWhisker

Examples

ano <- Ano_CrossValid(sampleData$mod, sampleData$obs)
eof_exp <- EOF(ano$exp, sampleData$lat, sampleData$lon)
eof_obs <- EOF(ano$obs, sampleData$lat, sampleData$lon)
mode1_exp <- ProjectField(ano$exp, eof_exp, mode = 1)
mode1_obs <- ProjectField(ano$obs, eof_obs, mode = 1)

## Not run:
# Plot the forecast and the observation of the first mode for the last year
# of forecast
sdate_dim_length <- dim(mode1_obs)['sdate']
plot(mode1_obs[sdate_dim_length, 1, 1, ], type = "l", ylim = c(-1, 1),

lwd = 2)
for (i in 1:dim(mode1_exp)['member']) {
par(new = TRUE)
plot(mode1_exp[sdate_dim_length, 1, i, ], type = "l", col = rainbow(10)[i],

ylim = c(-15000, 15000))
}

## End(Not run)

RandomWalkTest Random walk test for skill differences

Description

Forecast comparison of the skill obtained with 2 forecasts (with respect to a common reference)
based on Random Walks, with significance estimate at the 5 confidence level, as in DelSole and
Tippett (2015).

Usage

RandomWalkTest(skill_A, skill_B, time_dim = "sdate", ncores = NULL)



116 RatioRMS

Arguments

skill_A A numerical array of the time series of the skill with the forecaster A’s.

skill_B A numerical array of the time series of the skill with the forecaster B’s. The
dimensions should be identical as parameter ’skill_A’.

time_dim A character string indicating the name of the dimension along which the tests
are computed. The default value is ’sdate’.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list of 2:

$score A numerical array with the same dimensions as the input arrays except ’time_dim’.
The number of times that forecaster A has been better than forecaster B minus
the number of times that forecaster B has been better than forecaster A (for skill
positively oriented). If $score is positive forecaster A is better than forecaster B,
and if $score is negative forecaster B is better than forecaster B.

$signif A logical array with the same dimensions as the input arrays except ’time_dim’.
Whether the difference is significant or not at the 5 significance level.

Examples

fcst_A <- array(c(11:50), dim = c(sdate = 10, lat = 2, lon = 2))
fcst_B <- array(c(21:60), dim = c(sdate = 10, lat = 2, lon = 2))
reference <- array(1:40, dim = c(sdate = 10, lat = 2, lon = 2))
skill_A <- abs(fcst_A - reference)
skill_B <- abs(fcst_B - reference)
RandomWalkTest(skill_A = skill_A, skill_B = skill_B, time_dim = 'sdate', ncores = 1)

RatioRMS Compute the ratio between the RMSE of two experiments

Description

Calculate the ratio of the RMSE for two forecasts with the same observation, that is, RMSE(ens,
obs) / RMSE(ens.ref, obs). The p-value is provided by a two-sided Fischer test.

Usage

RatioRMS(exp1, exp2, obs, time_dim = "sdate", pval = TRUE, ncores = NULL)



RatioRMS 117

Arguments

exp1 A numeric array with named dimensions of the first experimental data. It must
have at least ’time_dim’ and have the same dimensions as ’exp2’ and ’obs’.

exp2 A numeric array with named dimensions of the second experimental data. It
must have at least ’time_dim’ and have the same dimensions as ’exp1’ and ’obs’.

obs A numeric array with named dimensions of the observational data. It must have
at least ’time_dim’ and have the same dimensions as ’exp1’ and ’exp2’.

time_dim A character string of the dimension name along which RMS is computed. The
default value is ’sdate’.

pval A logical value indicating whether to compute the p-value of Ho: RMSE1/RMSE2
= 1 or not. The default value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing the numeric arrays with dimensions identical with ’exp1’, ’exp2’, and ’obs’, expect
’time_dim’:

$ratiorms The ratio between the RMSE (i.e., RMSE1/RMSE2).

$p.val The p-value of the two-sided Fisher test with Ho: RMSE1/RMSE2 = 1. Only
exists if ’pval’ is TRUE.

Examples

# Compute DJF seasonal means and anomalies.
initial_month <- 11
mean_start_month <- 12
mean_stop_month <- 2
sampleData$mod <- Season(sampleData$mod, monini = initial_month,

moninf = mean_start_month, monsup = mean_stop_month)
sampleData$obs <- Season(sampleData$obs, monini = initial_month,

moninf = mean_start_month, monsup = mean_stop_month)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
# Generate two experiments with 2 and 1 members from the only experiment
# available in the sample data. Take only data values for a single forecast
# time step.
ano_exp_1 <- ClimProjDiags::Subset(ano_exp, 'member', c(1, 2))
ano_exp_2 <- ClimProjDiags::Subset(ano_exp, 'member', c(3))
ano_exp_1 <- ClimProjDiags::Subset(ano_exp_1, c('dataset', 'ftime'), list(1, 1), drop = 'selected')
ano_exp_2 <- ClimProjDiags::Subset(ano_exp_2, c('dataset', 'ftime'), list(1, 1), drop = 'selected')
ano_obs <- ClimProjDiags::Subset(ano_obs, c('dataset', 'ftime'), list(1, 1), drop = 'selected')
# Compute ensemble mean and provide as inputs to RatioRMS.
rrms <- RatioRMS(MeanDims(ano_exp_1, 'member'),

MeanDims(ano_exp_2, 'member'),
MeanDims(ano_obs, 'member'))



118 RatioSDRMS

# Plot the RatioRMS for the first forecast time step.

PlotEquiMap(rrms$ratiorms, sampleData$lon, sampleData$lat,
toptitle = 'Ratio RMSE')

RatioSDRMS Compute the ratio between the ensemble spread and RMSE

Description

Compute the ratio between the standard deviation of the members around the ensemble mean in
experimental data and the RMSE between the ensemble mean of experimental and observational
data. The p-value is provided by a one-sided Fischer test.

Usage

RatioSDRMS(
exp,
obs,
dat_dim = "dataset",
memb_dim = "member",
time_dim = "sdate",
pval = TRUE,
ncores = NULL

)

Arguments

exp A named numeric array of experimental data with at least two dimensions ’memb_dim’
and ’time_dim’.

obs A named numeric array of observational data with at least two dimensions ’memb_dim’
and ’time_dim’. It should have the same dimensions as parameter ’exp’ except
along ’dat_dim’ and ’memb_dim’.

dat_dim A character string indicating the name of dataset (nobs/nexp) dimension. If there
is no dataset dimension, set as NULL. The default value is ’dataset’.

memb_dim A character string indicating the name of the member dimension. It must be one
dimension in ’exp’ and ’obs’. The default value is ’member’.

time_dim A character string indicating the name of dimension along which the ratio is
computed. The default value is ’sdate’.

pval A logical value indicating whether to compute or not the p-value of the test Ho
: SD/RMSE = 1 or not. The default value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.



Regression 119

Value

A list of two arrays with dimensions c(nexp, nobs, the rest of dimensions of ’exp’ and ’obs’ except
memb_dim and time_dim), which nexp is the length of dat_dim of ’exp’ and nobs is the length of
dat_dim of ’obs’. (only present if pval = TRUE) of the one-sided Fisher test with Ho: SD/RMSE =
1.

$ratio The ratio of the ensemble spread and RMSE.

$p_val The p-value of the one-sided Fisher test with Ho: SD/RMSE = 1. Only present
if pval = TRUE.

Examples

# Load sample data as in Load() example:
example(Load)
rsdrms <- RatioSDRMS(sampleData$mod, sampleData$obs)
# Reorder the data in order to plot it with PlotVsLTime
rsdrms_plot <- array(dim = c(dim(rsdrms$ratio)[1:2], 4, dim(rsdrms$ratio)[3]))
rsdrms_plot[, , 2, ] <- rsdrms$ratio
rsdrms_plot[, , 4, ] <- rsdrms$p.val

PlotVsLTime(rsdrms_plot, toptitle = "Ratio ensemble spread / RMSE", ytitle = "",
monini = 11, limits = c(-1, 1.3), listexp = c('CMIP5 IC3'),
listobs = c('ERSST'), biglab = FALSE, siglev = TRUE,
fileout = 'tos_rsdrms.eps')

Regression Compute the regression of an array on another along one dimension.

Description

Compute the regression of the array ’datay’ on the array ’datax’ along the ’reg_dim’ dimension by
least square fitting (default) or self-defined model. The function provides the slope of the regres-
sion, the intercept, and the associated p-value and confidence interval. The filtered datay from the
regression onto datax is also provided.
The p-value relies on the F distribution, and the confidence interval relies on the student-T distribu-
tion.

Usage

Regression(
datay,
datax,
reg_dim = "sdate",
formula = y ~ x,



120 Regression

pval = TRUE,
conf = TRUE,
conf.lev = 0.95,
na.action = na.omit,
ncores = NULL

)

Arguments

datay An numeric array as predictand including the dimension along which the regres-
sion is computed.

datax An numeric array as predictor. The dimension should be identical as parameter
’datay’.

reg_dim A character string indicating the dimension along which to compute the regres-
sion. The default value is ’sdate’.

formula An object of class "formula" (see function link[stats]{lm}).

pval A logical value indicating whether to retrieve the p-value or not. The default
value is TRUE.

conf A logical value indicating whether to retrieve the confidence intervals or not.
The default value is TRUE.

conf.lev A numeric indicating the confidence level for the regression computation. The
default value is 0.95.

na.action A function or an integer. A function (e.g., na.omit, na.exclude, na.fail, na.pass)
indicates what should happen when the data contain NAs. A numeric indicates
the maximum number of NA position (it counts as long as one of datay and
datax is NA) allowed for compute regression. The default value is na.omit-

ncores An integer indicating the number of cores to use for parallel computation. De-
fault value is NULL.

Value

A list containing:

$regression A numeric array with same dimensions as parameter ’datay’ and ’datax’ except
the ’reg_dim’ dimension, which is replaced by a ’stats’ dimension containing
the regression coefficients from the lowest order (i.e., intercept) to the highest
degree. The length of the ’stats’ dimension should be polydeg + 1.

$conf.lower A numeric array with same dimensions as parameter ’daty’ and ’datax’ except
the ’reg_dim’ dimension, which is replaced by a ’stats’ dimension containing
the lower value of the siglev% confidence interval for all the regression co-
efficients with the same order as $regression. The length of ’stats’ dimension
should be polydeg + 1. Only present if conf = TRUE.

$conf.upper A numeric array with same dimensions as parameter ’daty’ and ’datax’ except
the ’reg_dim’ dimension, which is replaced by a ’stats’ dimension containing
the upper value of the siglev% confidence interval for all the regression co-
efficients with the same order as $regression. The length of ’stats’ dimension
should be polydeg + 1. Only present if conf = TRUE.



REOF 121

$p.val A numeric array with same dimensions as parameter ’daty’ and ’datax’ except
the ’reg_dim’ dimension, The array contains the p-value.

$filtered A numeric array with the same dimension as paramter ’datay’ and ’datax’, the
filtered datay from the regression onto datax along the ’reg_dim’ dimension.

Examples

# Load sample data as in Load() example:
example(Load)
datay <- sampleData$mod[, 1, , ]
names(dim(datay)) <- c('sdate', 'ftime')
datax <- sampleData$obs[, 1, , ]
names(dim(datax)) <- c('sdate', 'ftime')
res1 <- Regression(datay, datax, formula = y~poly(x, 2, raw = TRUE))
res2 <- Regression(datay, datax, conf.lev = 0.9)

REOF Area-weighted empirical orthogonal function analysis with varimax
rotation using SVD

Description

Perform an area-weighted EOF analysis with varimax rotation using single value decomposition
(SVD) based on a covariance matrix or a correlation matrix if parameter ’corr’ is set to TRUE. The
internal s2dv function .EOF() is used internally.

Usage

REOF(
ano,
lat,
lon,
ntrunc = 15,
time_dim = "sdate",
space_dim = c("lat", "lon"),
corr = FALSE,
ncores = NULL

)

Arguments

ano A numerical array of anomalies with named dimensions to calculate REOF. The
dimensions must have at least ’time_dim’ and ’space_dim’.

lat A vector of the latitudes of ’ano’.

lon A vector of the longitudes of ’ano’.



122 REOF

ntrunc A positive integer of the number of eofs to be kept for varimax rotation. This
function uses this value as ’neof’ too, which is the number of eofs to return by
.EOF(). The default value is 15. If time length or the product of latitude length
and longitude length is less than ’ntrunc’, ’ntrunc’ is equal to the minimum of
the three values.

time_dim A character string indicating the name of the time dimension of ’ano’. The
default value is ’sdate’.

space_dim A vector of two character strings. The first is the dimension name of latitude of
’ano’ and the second is the dimension name of longitude of ’ano’. The default
value is c(’lat’, ’lon’).

corr A logical value indicating whether to base on a correlation (TRUE) or on a
covariance matrix (FALSE). The default value is FALSE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing:

REOFs An array of REOF patterns normalized to 1 (unitless) with dimensions (number
of modes, the rest of the dimensions of ’ano’ except ’time_dim’). Multiplying
’REOFs’ by ’RPCs’ gives the original reconstructed field.

RPCs An array of principal components with the units of the original field to the power
of 2, with dimensions (time_dim, number of modes, the rest of the dimensions
of ’ano’ except ’space_dim’).

var An array of the percentage ( explained by each mode. The dimensions are (num-
ber of modes, the rest of the dimension except ’time_dim’ and ’space_dim’).

wght An array of the area weighting with dimensions ’space_dim’. It is calculated by
the square root of cosine of ’lat’ and used to compute the fraction of variance
explained by each REOFs.

See Also

EOF

Examples

# This example computes the REOFs along forecast horizons and plots the one
# that explains the greatest amount of variability. The example data has low
# resolution so the result may not be explanatory, but it displays how to
# use this function.

ano <- Ano_CrossValid(sampleData$mod, sampleData$obs)
ano <- MeanDims(ano$exp, c('dataset', 'member'))
res <- REOF(ano, lat = sampleData$lat, lon = sampleData$lon, ntrunc = 5)
## Not run:
PlotEquiMap(eof$EOFs[1, , , 1], sampleData$lat, sampleData$lon)



Reorder 123

## End(Not run)

Reorder Reorder the dimension of an array

Description

Reorder the dimension order of a multi-dimensional array

Usage

Reorder(data, order)

Arguments

data An array of which the dimension to be reordered.

order A vector of indices or character strings indicating the new order of the dimen-
sion.

Value

An array which has the same values as parameter ’data’ but with different dimension order.

Examples

dat1 <- array(c(1:30), dim = c(dat = 1, sdate = 3, ftime = 2, lon = 5))
print(dim(Reorder(dat1, c(2, 1, 4, 3))))
print(dim(Reorder(dat1, c('sdate', 'dat', 'lon', 'ftime'))))
dat2 <- array(c(1:10), dim = c(2, 1, 5))
print(dim(Reorder(dat2, c(2, 1, 3))))

RMS Compute root mean square error

Description

Compute the root mean square error for an array of forecasts and an array of observations. The
RMSEs are computed along time_dim, the dimension which corresponds to the startdate dimen-
sion. If comp_dim is given, the RMSEs are computed only if obs along the comp_dim dimension
are complete between limits[1] and limits[2], i.e. there are no NAs between limits[1] and limits[2].
This option can be activated if the user wishes to account only for the forecasts for which the corre-
sponding observations are available at all leadtimes.
The confidence interval is computed by the chi2 distribution.



124 RMS

Usage

RMS(
exp,
obs,
time_dim = "sdate",
dat_dim = "dataset",
comp_dim = NULL,
limits = NULL,
conf = TRUE,
conf.lev = 0.95,
ncores = NULL

)

Arguments

exp A named numeric array of experimental data, with at least two dimensions
’time_dim’ and ’dat_dim’. It can also be a vector with the same length as ’obs’,
then the vector will automatically be ’time_dim’ and ’dat_dim’ will be 1.

obs A named numeric array of observational data, same dimensions as parameter
’exp’ except along dat_dim. It can also be a vector with the same length as
’exp’, then the vector will automatically be ’time_dim’ and ’dat_dim’ will be 1.

time_dim A character string indicating the name of dimension along which the correlations
are computed. The default value is ’sdate’.

dat_dim A character string indicating the name of member (nobs/nexp) dimension. The
default value is ’dataset’.

comp_dim A character string indicating the name of dimension along which obs is taken
into account only if it is complete. The default value is NULL.

limits A vector of two integers indicating the range along comp_dim to be completed.
The default value is c(1, length(comp_dim dimension)).

conf A logical value indicating whether to retrieve the confidence intervals or not.
The default value is TRUE.

conf.lev A numeric indicating the confidence level for the regression computation. The
default value is 0.95.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing the numeric arrays with dimension:
c(nexp, nobs, all other dimensions of exp except time_dim).
nexp is the number of experiment (i.e., dat_dim in exp), and nobs is the number of observation (i.e.,
dat_dim in obs).

$rms The root mean square error.
$conf.lower The lower confidence interval. Only present if conf = TRUE.
$conf.upper The upper confidence interval. Only present if conf = TRUE.



RMSSS 125

Examples

# Load sample data as in Load() example:
set.seed(1)
exp1 <- array(rnorm(120), dim = c(dataset = 3, sdate = 5, ftime = 2, lon = 1, lat = 4))
set.seed(2)
obs1 <- array(rnorm(80), dim = c(dataset = 2, sdate = 5, ftime = 2, lon = 1, lat = 4))
set.seed(2)
na <- floor(runif(10, min = 1, max = 80))
obs1[na] <- NA
res <- RMS(exp1, obs1, comp_dim = 'ftime')
# Renew example when Ano and Smoothing are ready

RMSSS Compute root mean square error skill score

Description

Compute the root mean square error skill score (RMSSS) between an array of forecast ’exp’ and an
array of observation ’obs’. The two arrays should have the same dimensions except along dat_dim,
where the length can be different, with the number of experiments/models (nexp) and the number
of observational datasets (nobs).
RMSSS computes the root mean square error skill score of each jexp in 1:nexp against each jobs in
1:nobs which gives nexp * nobs RMSSS for each other grid point of the array.
The RMSSS are computed along the time_dim dimension which should corresponds to the startdate
dimension.
The p-value is optionally provided by an one-sided Fisher test.

Usage

RMSSS(
exp,
obs,
time_dim = "sdate",
dat_dim = "dataset",
pval = TRUE,
ncores = NULL

)

Arguments

exp A named numeric array of experimental data which contains at least two dimen-
sions for dat_dim and time_dim. It can also be a vector with the same length as
’obs’, then the vector will automatically be ’time_dim’ and ’dat_dim’ will be 1.



126 sampleDepthData

obs A named numeric array of observational data which contains at least two di-
mensions for dat_dim and time_dim. The dimensions should be the same as
paramter ’exp’ except the length of ’dat_dim’ dimension. The order of dimen-
sion can be different. It can also be a vector with the same length as ’exp’, then
the vector will automatically be ’time_dim’ and ’dat_dim’ will be 1.

time_dim A character string indicating the name of dimension along which the RMSSS
are computed. The default value is ’sdate’.

dat_dim A character string indicating the name of dataset (nobs/nexp) dimension. The
default value is ’dataset’.

pval A logical value indicating whether to compute or not the p-value of the test Ho:
RMSSS = 0. If pval = TRUE, the insignificant RMSSS will return NA. The
default value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing the numeric arrays with dimension:
c(nexp, nobs, all other dimensions of exp except time_dim).
nexp is the number of experiment (i.e., dat_dim in exp), and nobs is the number of observation (i.e.,
dat_dim in obs).

$rmsss The root mean square error skill score.

$p.val The p-value. Only present if pval = TRUE.

Examples

set.seed(1)
exp <- array(rnorm(30), dim = c(dataset = 2, time = 3, memb = 5))
set.seed(2)
obs <- array(rnorm(15), dim = c(time = 3, memb = 5, dataset = 1))
res <- RMSSS(exp, obs, time_dim = 'time')

sampleDepthData Sample of Experimental Data for Forecast Verification In Function Of
Latitudes And Depths

Description

This data set provides data in function of latitudes and depths for the variable ’tos’, i.e. sea surface
temperature, from the decadal climate prediction experiment run at IC3 in the context of the CMIP5
project.
Its name within IC3 local database is ’i00k’.



sampleMap 127

Usage

data(sampleDepthData)

Format

The data set provides with a variable named ’sampleDepthData’.

sampleDepthData$exp is an array that contains the experimental data and the dimension meanings
and values are:
c(# of experimental datasets, # of members, # of starting dates, # of lead-times, # of depths, # of
latitudes)
c(1, 5, 3, 60, 7, 21)

sampleDepthData$obs should be an array that contained the observational data but in this sample is
not defined (NULL).

sampleDepthData$depths is an array with the 7 longitudes covered by the data.

sampleDepthData$lat is an array with the 21 latitudes covered by the data.

sampleMap Sample Of Observational And Experimental Data For Forecast Verifi-
cation In Function Of Longitudes And Latitudes

Description

This data set provides data in function of longitudes and latitudes for the variable ’tos’, i.e. sea
surface temperature, over the mediterranean zone from the sample experimental and observational
datasets attached to the package. See examples on how to use Load() for details.

The data is provided through a variable named ’sampleMap’ and is structured as expected from
the ’Load()’ function in the ’s2dv’ package if was called as follows:

data_path <- system.file('sample_data', package = 's2dv')
exp <- list(

name = 'experiment',
path = file.path(data_path, 'model/$EXP_NAME$/monthly_mean',



128 sampleMap

'$VAR_NAME$_3hourly/$VAR_NAME$_$START_DATES$.nc')
)

obs <- list(
name = 'observation',
path = file.path(data_path, 'observation/$OBS_NAME$/monthly_mean',

'$VAR_NAME$/$VAR_NAME$_$YEAR$$MONTH$.nc')
)

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(exp), list(obs), startDates,

leadtimemin = 1, leadtimemax = 4, output = 'lonlat',
latmin = 27, latmax = 48, lonmin = -12, lonmax = 40)

Check the documentation on ’Load()’ in the package ’s2dv’ for more information.

Usage

data(sampleMap)

Format

The data set provides with a variable named ’sampleMap’.

sampleMap$mod is an array that contains the experimental data and the dimension meanings and
values are:
c(# of experimental datasets, # of members, # of starting dates, # of lead-times, # of latitudes, # of
longitudes)
c(1, 3, 5, 60, 2, 3)

sampleMap$obs is an array that contains the observational data and the dimension meanings and
values are:
c(# of observational datasets, # of members, # of starting dates, # of lead-times, # of latitudes, # of
longitudes)
c(1, 1, 5, 60, 2, 3)

sampleMap$lat is an array with the 2 latitudes covered by the data (see examples on Load() for
details on why such low resolution).

sampleMap$lon is an array with the 3 longitudes covered by the data (see examples on Load() for
details on why such low resolution).



sampleTimeSeries 129

sampleTimeSeries Sample Of Observational And Experimental Data For Forecast Verifi-
cation As Area Averages

Description

This data set provides area averaged data for the variable ’tos’, i.e. sea surface temperature, over
the mediterranean zone from the example datasets attached to the package. See examples on Load()
for more details.

The data is provided through a variable named ’sampleTimeSeries’ and is structured as expected
from the ’Load()’ function in the ’s2dv’ package if was called as follows:

data_path <- system.file('sample_data', package = 's2dv')
exp <- list(

name = 'experiment',
path = file.path(data_path, 'model/$EXP_NAME$/monthly_mean',

'$VAR_NAME$_3hourly/$VAR_NAME$_$START_DATES$.nc')
)

obs <- list(
name = 'observation',
path = file.path(data_path, 'observation/$OBS_NAME$/monthly_mean',

'$VAR_NAME$/$VAR_NAME$_$YEAR$$MONTH$.nc')
)

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(exp), list(obs), startDates,

output = 'areave', latmin = 27, latmax = 48, lonmin = -12,
lonmax = 40)

Check the documentation on ’Load()’ in the package ’s2dv’ for more information.

Usage

data(sampleTimeSeries)

Format

The data set provides with a variable named ’sampleTimeSeries’.

sampleTimeSeries$mod is an array that contains the experimental data and the dimension meanings
and values are:
c(# of experimental datasets, # of members, # of starting dates, # of lead-times)



130 Season

c(1, 3, 5, 60)

sampleTimeSeries$obs is an array that contains the observational data and the dimension meanings
and values are:
c(# of observational datasets, # of members, # of starting dates, # of lead-times)
c(1, 1, 5, 60)

sampleTimeSeries$lat is an array with the 2 latitudes covered by the data that was area averaged to
calculate the time series (see examples on Load() for details on why such low resolution).

sampleTimeSeries$lon is an array with the 3 longitudes covered by the data that was area averaged
to calculate the time series (see examples on Load() for details on why such low resolution).

Season Compute seasonal mean

Description

Compute the seasonal mean (or other methods) on monthly time series along one dimension of a
named multi-dimensional arrays. Partial season is not accounted.

Usage

Season(
data,
time_dim = "ftime",
monini,
moninf,
monsup,
method = mean,
na.rm = TRUE,
ncores = NULL

)

Arguments

data A named numeric array with at least one dimension ’time_dim’.

time_dim A character string indicating the name of dimension along which the seasonal
means are computed. The default value is ’ftime’.

monini An integer indicating what the first month of the time series is. It can be from 1
to 12.

moninf An integer indicating the starting month of the seasonal mean. It can be from 1
to 12.



Smoothing 131

monsup An integer indicating the end month of the seasonal mean. It can be from 1 to
12.

method An R function to be applied for seasonal calculation. For example, ’sum’ can be
used for total precipitation. The default value is mean.

na.rm A logical value indicating whether to remove NA values along ’time_dim’ when
calculating climatology (TRUE) or return NA if there is NA along ’time_dim’
(FALSE). The default value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

An array with the same dimensions as data except along the ’time_dim’ dimension, of which the
length changes to the number of seasons.

Examples

set.seed(1)
dat1 <- array(rnorm(144*3), dim = c(member = 2, sdate = 2, ftime = 12*3, lon = 3))
res <- Season(data = dat1, monini = 1, moninf = 1, monsup = 2)
res <- Season(data = dat1, monini = 10, moninf = 12, monsup = 2)
dat2 <- dat1
set.seed(2)
na <- floor(runif(30, min = 1, max = 144*3))
dat2[na] <- NA
res <- Season(data = dat2, monini = 3, moninf = 1, monsup = 2)
res <- Season(data = dat2, monini = 3, moninf = 1, monsup = 2, na.rm = FALSE)

Smoothing Smooth an array along one dimension

Description

Smooth an array of any number of dimensions along one dimension.

Usage

Smoothing(data, time_dim = "ftime", runmeanlen = 12, ncores = NULL)

Arguments

data A numerical array to be smoothed along one of its dimension (typically the
forecast time dimension).

time_dim A character string indicating the name of the dimension to be smoothed along.
The default value is ’ftime’.

runmeanlen An integer indicating the running mean length of sampling units (typically months).
The default value is 12.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.



132 Spectrum

Value

A numerical array with the same dimensions as parameter ’data’ but the ’time_dim’ dimension is
moved to the first. The head and tail part which do not have enough neighboring data for smoothing
is assigned as NA.

Examples

# Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
ano_obs <- Ano(sampleData$obs, clim$clim_obs)
smooth_ano_exp <- Smoothing(ano_exp, time_dim = 'ftime', runmeanlen = 12)
smooth_ano_obs <- Smoothing(ano_obs, time_dim = 'ftime', runmeanlen = 12)
smooth_ano_exp <- Reorder(smooth_ano_exp, c(2, 3, 4, 1))
smooth_ano_obs <- Reorder(smooth_ano_obs, c(2, 3, 4, 1))

PlotAno(smooth_ano_exp, smooth_ano_obs, startDates,
toptitle = "Smoothed Mediterranean mean SST", ytitle = "K",
fileout = "tos_smoothed_ano.png")

Spectrum Estimate frequency spectrum

Description

Estimate the frequency spectrum of the data array together with a user-specified confidence level.
The output is provided as an array with dimensions c(number of frequencies, stats = 3, other margin
dimensions of data). The ’stats’ dimension contains the frequencies at which the spectral density is
estimated, the estimates of the spectral density, and the significance level.
The spectrum estimation relies on an R built-in function spectrum() and the confidence interval is
estimated by the Monte-Carlo method.

Usage

Spectrum(data, time_dim = "ftime", conf.lev = 0.95, ncores = NULL)

Arguments

data A vector or numeric array of which the frequency spectrum is required. If it’s
a vector, it should be a time series. If it’s an array, the dimensions must have at
least ’time_dim’. The data is assumed to be evenly spaced in time.

time_dim A character string indicating the dimension along which to compute the fre-
quency spectrum. The default value is ’ftime’.

conf.lev A numeric indicating the confidence level for the Monte-Carlo significance test.
The default value is 0.95.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.



SPOD 133

Value

A numeric array of the frequency spectrum with dimensions c(<time_dim> = number of frequen-
cies, stats = 3, the rest of the dimensions of ’data’). The ’stats’ dimension contains the frequency
values, the spectral density, and the confidence interval.

Examples

# Load sample data as in Load() example:
example(Load)
ensmod <- MeanDims(sampleData$mod, 2)
spectrum <- Spectrum(ensmod)

for (jsdate in 1:dim(spectrum)['sdate']) {
for (jlen in 1:dim(spectrum)['ftime']) {
if (spectrum[jlen, 2, 1, jsdate] > spectrum[jlen, 3, 1, jsdate]) {

ensmod[1, jsdate, ] <- Filter(ensmod[1, jsdate, ], spectrum[jlen, 1, 1, jsdate])
}

}
}

PlotAno(InsertDim(ensmod, 2, 1), sdates = startDates)

SPOD Compute the South Pacific Ocean Dipole (SPOD) index

Description

The South Pacific Ocean Dipole (SPOD) index is related to the El Nino-Southern Oscillation
(ENSO) and the Inderdecadal Pacific Oscillation (IPO). The SPOD index is computed as the dif-
ference of weighted-averaged SST anomalies over 20ºS-48ºS, 165ºE-190ºE (NW pole) and the
weighted-averaged SST anomalies over 44ºS-65ºS, 220ºE-260ºE (SE pole) (Saurral et al., 2020).
If different members and/or datasets are provided, the climatology (used to calculate the anomalies)
is computed individually for all of them.

Usage

SPOD(
data,
data_lats,
data_lons,
type,
lat_dim = "lat",
lon_dim = "lon",
mask = NULL,
monini = 11,
fmonth_dim = "fmonth",



134 SPOD

sdate_dim = "sdate",
indices_for_clim = NULL,
year_dim = "year",
month_dim = "month",
na.rm = TRUE,
ncores = NULL

)

Arguments

data A numerical array to be used for the index computation with, at least, the dimen-
sions: 1) latitude, longitude, start date and forecast month (in case of decadal
predictions), 2) latitude, longitude, year and month (in case of historical simu-
lations or observations). This data has to be provided, at least, over the whole
region needed to compute the index.

data_lats A numeric vector indicating the latitudes of the data.

data_lons A numeric vector indicating the longitudes of the data.

type A character string indicating the type of data (’dcpp’ for decadal predictions,
’hist’ for historical simulations, or ’obs’ for observations or reanalyses).

lat_dim A character string of the name of the latitude dimension. The default value is
’lat’.

lon_dim A character string of the name of the longitude dimension. The default value is
’lon’.

mask An array of a mask (with 0’s in the grid points that have to be masked) or NULL
(i.e., no mask is used). This parameter allows to remove the values over land
in case the dataset is a combination of surface air temperature over land and
sea surface temperature over the ocean. Also, it can be used to mask those grid
points that are missing in the observational dataset for a fair comparison between
the forecast system and the reference dataset. The default value is NULL.

monini An integer indicating the month in which the forecast system is initialized. Only
used when parameter ’type’ is ’dcpp’. The default value is 11, i.e., initialized in
November.

fmonth_dim A character string indicating the name of the forecast month dimension. Only
used if parameter ’type’ is ’dcpp’. The default value is ’fmonth’.

sdate_dim A character string indicating the name of the start date dimension. Only used if
parameter ’type’ is ’dcpp’. The default value is ’sdate’.

indices_for_clim

A numeric vector of the indices of the years to compute the climatology for cal-
culating the anomalies, or NULL so the climatology is calculated over the whole
period. If the data are already anomalies, set it to FALSE. The default value is
NULL.
In case of parameter ’type’ is ’dcpp’, ’indices_for_clim’ must be relative to the
first forecast year, and the climatology is automatically computed over the com-
mon calendar period for the different forecast years.

year_dim A character string indicating the name of the year dimension The default value
is ’year’. Only used if parameter ’type’ is ’hist’ or ’obs’.



Spread 135

month_dim A character string indicating the name of the month dimension. The default
value is ’month’. Only used if parameter ’type’ is ’hist’ or ’obs’.

na.rm A logical value indicanting whether to remove NA values. The default value is
TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A numerical array with the SPOD index with the same dimensions as data except the lat_dim,
lon_dim and fmonth_dim (month_dim) in case of decadal predictions (historical simulations or
observations). In case of decadal predictions, a new dimension ’fyear’ is added.

Examples

## Observations or reanalyses
obs <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12))
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_obs <- SPOD(data = obs, data_lats = lat, data_lons = lon, type = 'obs')

## Historical simulations
hist <- array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12, member = 5))
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_hist <- SPOD(data = hist, data_lats = lat, data_lons = lon, type = 'hist')

## Decadal predictions
dcpp <- array(1:100, dim = c(sdate = 5, lat = 19, lon = 37, fmonth = 24, member = 5))
lat <- seq(-90, 90, 10)
lon <- seq(0, 360, 10)
index_dcpp <- SPOD(data = dcpp, data_lats = lat, data_lons = lon, type = 'dcpp', monini = 1)

Spread Compute interquartile range, maximum-minimum, standard deviation
and median absolute deviation

Description

Compute interquartile range, maximum-minimum, standard deviation and median absolute devia-
tion along the list of dimensions provided by the compute_dim argument (typically along the en-
semble member and start date dimension). The confidence interval is computed by bootstrapping by
100 times. The input data can be the output of Load(), Ano(), or Ano_CrossValid(), for example.



136 Spread

Usage

Spread(
data,
compute_dim = "member",
na.rm = TRUE,
conf = TRUE,
conf.lev = 0.95,
ncores = NULL

)

Arguments

data A numeric vector or array with named dimensions to compute the statistics. The
dimensions should at least include ’compute_dim’.

compute_dim A vector of character strings of the dimension names along which to compute
the statistics. The default value is ’member’.

na.rm A logical value indicating if NAs should be removed (TRUE) or kept (FALSE)
for computation. The default value is TRUE.

conf A logical value indicating whether to compute the confidence intervals or not.
The default value is TRUE.

conf.lev A numeric value of the confidence level for the computation. The default value
is 0.95.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list of numeric arrays with the same dimensions as ’data’ but without ’compute_dim’ and with
the first dimension ’stats’. If ’conf’ is TRUE, the length of ’stats’ is 3 corresponding to the lower
limit of the confidence interval, the spread, and the upper limit of the confidence interval. If ’conf’
is FALSE, the length of ’stats’ is 1 corresponding to the spread.

$iqr InterQuartile Range.

$maxmin Maximum - Minimum.

$sd Standard Deviation.

$mad Median Absolute Deviation.

Examples

# Load sample data as in Load() example:
example(Load)
clim <- Clim(sampleData$mod, sampleData$obs)
ano_exp <- Ano(sampleData$mod, clim$clim_exp)
runmean_months <- 12
smooth_ano_exp <- Smoothing(ano_exp, runmeanlen = runmean_months)
smooth_ano_exp_m_sub <- smooth_ano_exp - InsertDim(MeanDims(smooth_ano_exp, 'member',

na.rm = TRUE),



StatSeasAtlHurr 137

posdim = 3,
lendim = dim(smooth_ano_exp)['member'],
name = 'member')

spread <- Spread(smooth_ano_exp_m_sub, compute_dim = c('member', 'sdate'))

PlotVsLTime(Reorder(spread$iqr, c('dataset', 'stats', 'ftime')),
toptitle = "Inter-Quartile Range between ensemble members",
ytitle = "K", monini = 11, limits = NULL,
listexp = c('CMIP5 IC3'), listobs = c('ERSST'), biglab = FALSE,
hlines = c(0), fileout = 'tos_iqr.png')

PlotVsLTime(Reorder(spread$maxmin, c('dataset', 'stats', 'ftime')),
toptitle = "Maximum minus minimum of the members",
ytitle = "K", monini = 11, limits = NULL,
listexp = c('CMIP5 IC3'), listobs = c('ERSST'), biglab = FALSE,
hlines = c(0), fileout = 'tos_maxmin.png')

PlotVsLTime(Reorder(spread$sd, c('dataset', 'stats', 'ftime')),
toptitle = "Standard deviation of the members",
ytitle = "K", monini = 11, limits = NULL,
listexp = c('CMIP5 IC3'), listobs = c('ERSST'), biglab = FALSE,
hlines = c(0), fileout = 'tos_sd.png')

PlotVsLTime(Reorder(spread$mad, c('dataset', 'stats', 'ftime')),
toptitle = "Median Absolute Deviation of the members",
ytitle = "K", monini = 11, limits = NULL,
listexp = c('CMIP5 IC3'), listobs = c('ERSST'), biglab = FALSE,
hlines = c(0), fileout = 'tos_mad.png')

StatSeasAtlHurr Compute estimate of seasonal mean of Atlantic hurricane activity

Description

Compute one of G. Villarini’s statistically downscaled measure of mean Atlantic hurricane activity
and its variance. The hurricane activity is estimated using seasonal averages of sea surface temper-
ature anomalies over the tropical Atlantic (bounded by 10N-25N and 80W-20W) and the tropics at
large (bounded by 30N-30S). The anomalies are for the JJASON season.
The estimated seasonal average is either 1) number of hurricanes, 2) number of tropical cyclones
with lifetime >=48h or 3) power dissipation index (PDI; in 10^11 m^3 s^-2).
The statistical models used in this function are described in references.

Usage

StatSeasAtlHurr(atlano, tropano, hrvar = "HR", ncores = NULL)

Arguments

atlano A numeric array with named dimensions of Atlantic sea surface temperature
anomalies. It must have the same dimensions as ’tropano’.



138 ToyModel

tropano A numeric array with named dimensions of tropical sea surface temperature
anomalies. It must have the same dimensions as ’atlano’.

hrvar A character string of the seasonal average to be estimated. The options are ei-
ther "HR" (hurricanes), "TC" (tropical cyclones with lifetime >=48h), or "PDI"
(power dissipation index). The default value is ’HR’.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list composed of two arrays with the same dimensions as ’atlano’ and ’tropano’.

$mean The mean of the desired quantity.

$var The variance of that quantity.

References

Villarini et al. (2010) Mon Wea Rev, 138, 2681-2705.
Villarini et al. (2012) Mon Wea Rev, 140, 44-65.
Villarini et al. (2012) J Clim, 25, 625-637.
An example of how the function can be used in hurricane forecast studies is given in
Caron, L.-P. et al. (2014) Multi-year prediction skill of Atlantic hurricane activity in CMIP5 decadal
hindcasts. Climate Dynamics, 42, 2675-2690. doi:10.1007/s00382-013-1773-1.

Examples

# Let AtlAno represents 5 different 5-year forecasts of seasonally averaged
# Atlantic sea surface temperature anomalies.
AtlAno <- array(runif(25, -1, 1), dim = c(sdate = 5, ftime = 5))
# Let TropAno represents 5 corresponding 5-year forecasts of seasonally
# averaged tropical sea surface temperature anomalies.
TropAno <- array(runif(25, -1, 1), dim = c(sdate = 5, ftime = 5))
# The seasonal average of hurricanes for each of the five forecasted years,
# for each forecast, would then be given by.
hr_count <- StatSeasAtlHurr(atlano = AtlAno, tropano = TropAno, hrvar = 'HR')

ToyModel Synthetic forecast generator imitating seasonal to decadal forecasts.
The components of a forecast: (1) predictabiltiy (2) forecast error (3)
non-stationarity and (4) ensemble generation. The forecast can be
computed for real observations or observations generated artifically.



ToyModel 139

Description

The toymodel is based on the model presented in Weigel et al. (2008) QJRS with an extension to
consider non-stationary distributions prescribing a linear trend. The toymodel allows to generate
an aritifical forecast based on obsevations provided by the input (from Load) or artificially gener-
ated observations based on the input parameters (sig, trend). The forecast can be specfied for any
number of start-dates, lead-time and ensemble members. It imitates components of a forecast: (1)
predictabiltiy (2) forecast error (3) non-stationarity and (4) ensemble generation. The forecast can
be computed for real observations or observations generated artifically.

Usage

ToyModel(
alpha = 0.1,
beta = 0.4,
gamma = 1,
sig = 1,
trend = 0,
nstartd = 30,
nleadt = 4,
nmemb = 10,
obsini = NULL,
fxerr = NULL

)

Arguments

alpha Predicabiltiy of the forecast on the observed residuals Must be a scalar 0 < alpha
< 1.

beta Standard deviation of forecast error Must be a scalar 0 < beta < 1.
gamma Factor on the linear trend to sample model uncertainty. Can be a scalar or a

vector of scalars -inf < gammay < inf. Defining a scalar results in multiple
forecast, corresponding to different models with different trends.

sig Standard deviation of the residual variability of the forecast. If observations are
provided ’sig’ is computed from the observations.

trend Linear trend of the forecast. The same trend is used for each lead-time. If
observations are provided the ’trend’ is computed from the observations, with
potentially different trends for each lead-time. The trend has no unit and needs
to be defined according to the time vector [1,2,3,... nstartd].

nstartd Number of start-dates of the forecast. If observations are provided the ’nstartd’
is computed from the observations.

nleadt Number of lead-times of the forecats. If observations are provided the ’nleadt’
is computed from the observations.

nmemb Number of members of the forecasts.
obsini Observations that can be used in the synthetic forecast coming from Load (anoma-

lies are expected). If no observations are provided artifical observations are
generated based on Gaussian variaiblity with standard deviation from ’sig’ and
linear trend from ’trend’.



140 ToyModel

fxerr Provides a fixed error of the forecast instead of generating one from the level of
beta. This allows to perform pair of forecasts with the same conditional error as
required for instance in an attribution context.

Value

List of forecast with $mod including the forecast and $obs the observations. The dimensions corre-
spond to c(length(gamma), nmemb, nstartd, nleadt)

Examples

# Example 1: Generate forecast with artifical observations
# Seasonal prediction example
a <- 0.1
b <- 0.3
g <- 1
sig <- 1
t <- 0.02
ntd <- 30
nlt <- 4
nm <- 10
toyforecast <- ToyModel(alpha = a, beta = b, gamma = g, sig = sig, trend = t,

nstartd = ntd, nleadt = nlt, nmemb = nm)

# Example 2: Generate forecast from loaded observations
# Decadal prediction example
## Not run:

data_path <- system.file('sample_data', package = 's2dv')
expA <- list(name = 'experiment', path = file.path(data_path,

'model/$EXP_NAME$/$STORE_FREQ$_mean/$VAR_NAME$_3hourly',
'$VAR_NAME$_$START_DATE$.nc'))

obsX <- list(name = 'observation', path = file.path(data_path,
'$OBS_NAME$/$STORE_FREQ$_mean/$VAR_NAME$',
'$VAR_NAME$_$YEAR$$MONTH$.nc'))

# Now we are ready to use Load().
startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
sampleData <- Load('tos', list(expA), list(obsX), startDates,

output = 'areave', latmin = 27, latmax = 48,
lonmin = -12, lonmax = 40)

## End(Not run)

a <- 0.1
b <- 0.3
g <- 1
nm <- 10

toyforecast <- ToyModel(alpha = a, beta = b, gamma = g, nmemb = nm,
obsini = sampleData$obs, nstartd = 5, nleadt = 60)

## Add PlotAno() back when this function is included!!



TPI 141

# \donttest{
#PlotAno(toyforecast$mod, toyforecast$obs, startDates,
# toptitle = c("Synthetic decadal temperature prediction"),
# fileout = "ex_toymodel.eps")
# }

TPI Compute the Tripole Index (TPI) for the Interdecadal Pacific Oscilla-
tion (IPO)

Description

The Tripole Index (TPI) for the Interdecadal Pacific Oscillation (IPO) is computed as the dif-
ference of weighted-averaged SST anomalies over 10ºS-10ºN, 170ºE-270ºE minus the mean of
the weighted-averaged SST anomalies over 25ºN-45ºN, 140ºE-215ºE and 50ºS-15ºS, 150ºE-200ºE
(Henley et al., 2015). If different members and/or datasets are provided, the climatology (used to
calculate the anomalies) is computed individually for all of them.

Usage

TPI(
data,
data_lats,
data_lons,
type,
lat_dim = "lat",
lon_dim = "lon",
mask = NULL,
monini = 11,
fmonth_dim = "fmonth",
sdate_dim = "sdate",
indices_for_clim = NULL,
year_dim = "year",
month_dim = "month",
na.rm = TRUE,
ncores = NULL

)

Arguments

data A numerical array to be used for the index computation with, at least, the dimen-
sions: 1) latitude, longitude, start date and forecast month (in case of decadal
predictions), 2) latitude, longitude, year and month (in case of historical simu-
lations or observations). This data has to be provided, at least, over the whole
region needed to compute the index.

data_lats A numeric vector indicating the latitudes of the data.



142 TPI

data_lons A numeric vector indicating the longitudes of the data.

type A character string indicating the type of data (’dcpp’ for decadal predictions,
’hist’ for historical simulations, or ’obs’ for observations or reanalyses).

lat_dim A character string of the name of the latitude dimension. The default value is
’lat’.

lon_dim A character string of the name of the longitude dimension. The default value is
’lon’.

mask An array of a mask (with 0’s in the grid points that have to be masked) or NULL
(i.e., no mask is used). This parameter allows to remove the values over land
in case the dataset is a combination of surface air temperature over land and
sea surface temperature over the ocean. Also, it can be used to mask those grid
points that are missing in the observational dataset for a fair comparison between
the forecast system and the reference dataset. The default value is NULL.

monini An integer indicating the month in which the forecast system is initialized. Only
used when parameter ’type’ is ’dcpp’. The default value is 11, i.e., initialized in
November.

fmonth_dim A character string indicating the name of the forecast month dimension. Only
used if parameter ’type’ is ’dcpp’. The default value is ’fmonth’.

sdate_dim A character string indicating the name of the start date dimension. Only used if
parameter ’type’ is ’dcpp’. The default value is ’sdate’.

indices_for_clim

A numeric vector of the indices of the years to compute the climatology for cal-
culating the anomalies, or NULL so the climatology is calculated over the whole
period. If the data are already anomalies, set it to FALSE. The default value is
NULL.
In case of parameter ’type’ is ’dcpp’, ’indices_for_clim’ must be relative to the
first forecast year, and the climatology is automatically computed over the com-
mon calendar period for the different forecast years.

year_dim A character string indicating the name of the year dimension The default value
is ’year’. Only used if parameter ’type’ is ’hist’ or ’obs’.

month_dim A character string indicating the name of the month dimension. The default
value is ’month’. Only used if parameter ’type’ is ’hist’ or ’obs’.

na.rm A logical value indicanting whether to remove NA values. The default value is
TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A numerical array with the TPI index with the same dimensions as data except the lat_dim, lon_dim
and fmonth_dim (month_dim) in case of decadal predictions (historical simulations or observa-
tions). In case of decadal predictions, a new dimension ’fyear’ is added.



Trend 143

Examples

## Observations or reanalyses
obs = array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12))
lat = seq(-90, 90, 10)
lon = seq(0, 360, 10)
index_obs = TPI(data = obs, data_lats = lat, data_lons = lon, type = 'obs')

## Historical simulations
hist = array(1:100, dim = c(year = 5, lat = 19, lon = 37, month = 12, member = 5))
lat = seq(-90, 90, 10)
lon = seq(0, 360, 10)
index_hist = TPI(data = hist, data_lats = lat, data_lons = lon, type = 'hist')

## Decadal predictions
dcpp = array(1:100, dim = c(sdate = 5, lat = 19, lon = 37, fmonth = 24, member = 5))
lat = seq(-90, 90, 10)
lon = seq(0, 360, 10)
index_dcpp = TPI(data = dcpp, data_lats = lat, data_lons = lon, type = 'dcpp', monini = 1)

Trend Compute the trend

Description

Compute the linear trend or any degree of polynomial regression along the forecast time. It returns
the regression coefficients (including the intercept) and the detrended array. The confidence inter-
vals and p-value are also provided if needed.
The confidence interval relies on the student-T distribution, and the p-value is calculated by ANOVA.

Usage

Trend(
data,
time_dim = "ftime",
interval = 1,
polydeg = 1,
conf = TRUE,
conf.lev = 0.95,
pval = TRUE,
ncores = NULL

)

Arguments

data An numeric array including the dimension along which the trend is computed.

time_dim A character string indicating the dimension along which to compute the trend.
The default value is ’ftime’.



144 Trend

interval A positive numeric indicating the unit length between two points along ’time_dim’
dimension. The default value is 1.

polydeg A positive integer indicating the degree of polynomial regression. The default
value is 1.

conf A logical value indicating whether to retrieve the confidence intervals or not.
The default value is TRUE.

conf.lev A numeric indicating the confidence level for the regression computation. The
default value is 0.95.

pval A logical value indicating whether to compute the p-value or not. The default
value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

A list containing:

$trend A numeric array with the first dimension ’stats’, followed by the same dimen-
sions as parameter ’data’ except the ’time_dim’ dimension. The length of the
’stats’ dimension should be polydeg + 1, containing the regression coefficients
from the lowest order (i.e., intercept) to the highest degree.

$conf.lower A numeric array with the first dimension ’stats’, followed by the same dimen-
sions as parameter ’data’ except the ’time_dim’ dimension. The length of the
’stats’ dimension should be polydeg + 1, containing the lower limit of the conf.lev%
confidence interval for all the regression coefficients with the same order as
$trend. Only present conf = TRUE.

$conf.upper A numeric array with the first dimension ’stats’, followed by the same dimen-
sions as parameter ’data’ except the ’time_dim’ dimension. The length of the
’stats’ dimension should be polydeg + 1, containing the upper limit of the conf.lev%
confidence interval for all the regression coefficients with the same order as
$trend. Only present conf = TRUE.

$p.val The p-value calculated by anova(). Only present if pval = TRUE.

$detrended A numeric array with the same dimensions as paramter ’data’, containing the
detrended values along the ’time_dim’ dimension.

Examples

# Load sample data as in Load() example:
example(Load)
months_between_startdates <- 60
trend <- Trend(sampleData$obs, polydeg = 2, interval = months_between_startdates)



UltimateBrier 145

UltimateBrier Compute Brier scores

Description

Interface to compute probabilistic scores (Brier Score, Brier Skill Score) from the forecast and
observational data anomalies. It provides six types to choose.

Usage

UltimateBrier(
exp,
obs,
dat_dim = "dataset",
memb_dim = "member",
time_dim = "sdate",
quantile = TRUE,
thr = c(5/100, 95/100),
type = "BS",
decomposition = TRUE,
ncores = NULL

)

Arguments

exp A numeric array of forecast anomalies with named dimensions that at least in-
clude ’dat_dim’, ’memb_dim’, and ’time_dim’. It can be provided by Ano().

obs A numeric array of observational reference anomalies with named dimensions
that at least include ’dat_dim’ and ’time_dim’. If it has ’memb_dim’, the length
must be 1. The dimensions should be consistent with ’exp’ except ’dat_dim’ and
’memb_dim’. It can be provided by Ano().

dat_dim A character string indicating the name of the dataset dimension in ’exp’ and
’obs’. The default value is ’dataset’.

memb_dim A character string indicating the name of the member dimension in ’exp’ (and
’obs’) for ensemble mean calculation. The default value is ’member’.

time_dim A character string indicating the dimension along which to compute the proba-
bilistic scores. The default value is ’sdate’.

quantile A logical value to decide whether a quantile (TRUE) or a threshold (FALSE) is
used to estimate the forecast and observed probabilities. If ’type’ is ’FairEnsem-
bleBS’ or ’FairEnsembleBSS’, it must be TRUE. The default value is TRUE.

thr A numeric vector to be used in probability calculation (for ’BS’, ’FairStart-
DatesBS’, ’BSS’, and ’FairStartDatesBSS’) and binary event judgement (for
’FairEnsembleBS’ and ’FairEnsembleBSS’). It is as quantiles if ’quantile’ is
TRUE or as thresholds if ’quantile’ is FALSE. The default value is c(0.05,0.95)
for ’quantile = TRUE’.



146 UltimateBrier

type A character string of the desired score type. It can be the following values:

• ’BS’: Simple Brier Score. Use SpecsVerification::BrierDecomp inside.
• ’FairEnsembleBS’: Corrected Brier Score computed across ensemble mem-

bers. Use SpecsVerification::FairBrier inside.
• ’FairStartDatesBS’: Corrected Brier Score computed across starting dates.

Use s2dv:::.BrierScore inside.
• ’BSS’: Simple Brier Skill Score. Use s2dv:::.BrierScore inside.
• ’FairEnsembleBSS’: Corrected Brier Skill Score computed across ensem-

ble members. Use SpecsVerification::FairBrierSs inside.
• ’FairStartDatesBSS’: Corrected Brier Skill Score computed across starting

dates. Use s2dv:::.BrierScore inside.

The default value is ’BS’.

decomposition A logical value to determine whether the decomposition of the Brier Score
should be provided (TRUE) or not (FALSE). It is only used when ’type’ is ’BS’
or ’FairStartDatesBS’. The default value is TRUE.

ncores An integer indicating the number of cores to use for parallel computation. The
default value is NULL.

Value

If ’type’ is ’BS’ or ’FairStartDatesBS’ and ’decomposition’ is TRUE, the output is a list of 4 arrays
(see details below.) In other cases, the output is an array of Brier scores or Brier skill scores. All
the arrays have the same dimensions: c(nexp, nobs, no. of bins, the rest dimensions of ’exp’ except
’time_dim’ and ’memb_dim’). ’nexp’ and ’nobs’ is the length of dataset dimension in ’exp’ and
’obs’ respectively.
The list of 4 includes:

• $bs: Brier Score

• $rel: Reliability component

• $res: Resolution component

• $unc: Uncertainty component

Examples

sampleData$mod <- Season(sampleData$mod, monini = 11, moninf = 12, monsup = 2)
sampleData$obs <- Season(sampleData$obs, monini = 11, moninf = 12, monsup = 2)
clim <- Clim(sampleData$mod, sampleData$obs)
exp <- Ano(sampleData$mod, clim$clim_exp)
obs <- Ano(sampleData$obs, clim$clim_obs)
bs <- UltimateBrier(exp, obs)
bss <- UltimateBrier(exp, obs, type = 'BSS')



Index

∗ datagen
PlotBoxWhisker, 86

ACC, 3
AMV, 6
AnimateMap, 8
Ano, 11
Ano_CrossValid, 12

BrierScore, 13

CDORemap, 15
Clim, 20
clim.colors (clim.palette), 22
clim.palette, 22
Cluster, 22
ColorBar, 25
Composite, 28
ConfigAddEntry (ConfigEditEntry), 33
ConfigApplyMatchingEntries, 30
ConfigEditDefinition, 32
ConfigEditEntry, 33
ConfigFileCreate, 32
ConfigFileCreate (ConfigFileOpen), 36
ConfigFileOpen, 32, 36
ConfigFileSave (ConfigFileOpen), 36
ConfigRemoveDefinition

(ConfigEditDefinition), 32
ConfigRemoveEntry (ConfigEditEntry), 33
ConfigShowDefinitions

(ConfigShowTable), 41
ConfigShowSimilarEntries, 39
ConfigShowTable, 41
Consist_Trend, 42
Corr, 44

Eno, 46
EOF, 47
EuroAtlanticTC, 49

Filter, 51

GMST, 52
GSAT, 55

Histo2Hindcast, 57

InsertDim, 58

LeapYear, 59
Load, 60

MeanDims, 75

NAO, 76

Persistence, 78
Plot2VarsVsLTime, 80
PlotACC, 82
PlotAno, 84
PlotBoxWhisker, 86
PlotClim, 89
PlotEquiMap, 91
PlotLayout, 97
PlotMatrix, 101
PlotSection, 103
PlotStereoMap, 105
PlotVsLTime, 110
ProbBins, 112
ProjectField, 114

RandomWalkTest, 115
RatioRMS, 116
RatioSDRMS, 118
Regression, 119
REOF, 121
Reorder, 123
RMS, 123
RMSSS, 125

sampleDepthData, 126
sampleMap, 127
sampleTimeSeries, 129

147



148 INDEX

Season, 130
Smoothing, 131
Spectrum, 132
SPOD, 133
Spread, 135
StatSeasAtlHurr, 137

ToyModel, 138
TPI, 141
Trend, 143

UltimateBrier, 145


	ACC
	AMV
	AnimateMap
	Ano
	Ano_CrossValid
	BrierScore
	CDORemap
	Clim
	clim.palette
	Cluster
	ColorBar
	Composite
	ConfigApplyMatchingEntries
	ConfigEditDefinition
	ConfigEditEntry
	ConfigFileOpen
	ConfigShowSimilarEntries
	ConfigShowTable
	Consist_Trend
	Corr
	Eno
	EOF
	EuroAtlanticTC
	Filter
	GMST
	GSAT
	Histo2Hindcast
	InsertDim
	LeapYear
	Load
	MeanDims
	NAO
	Persistence
	Plot2VarsVsLTime
	PlotACC
	PlotAno
	PlotBoxWhisker
	PlotClim
	PlotEquiMap
	PlotLayout
	PlotMatrix
	PlotSection
	PlotStereoMap
	PlotVsLTime
	ProbBins
	ProjectField
	RandomWalkTest
	RatioRMS
	RatioSDRMS
	Regression
	REOF
	Reorder
	RMS
	RMSSS
	sampleDepthData
	sampleMap
	sampleTimeSeries
	Season
	Smoothing
	Spectrum
	SPOD
	Spread
	StatSeasAtlHurr
	ToyModel
	TPI
	Trend
	UltimateBrier
	Index

