mixKernel: Omics Data Integration Using Kernel Methods

Kernel-based methods are powerful methods for integrating heterogeneous types of data. mixKernel aims at providing methods to combine kernel for unsupervised exploratory analysis. Different solutions are provided to compute a meta-kernel, in a consensus way or in a way that best preserves the original topology of the data. mixKernel also integrates kernel PCA to visualize similarities between samples in a non linear space and from the multiple source point of view. Functions to assess and display important variables are also provided in the package. Jerome Mariette and Nathalie Villa-Vialaneix (2018) <doi:10.1093/bioinformatics/btx682>.

Version: 0.7
Depends: R (≥ 3.5.0), mixOmics, ggplot2, reticulate (≥ 1.14)
Imports: vegan, phyloseq, corrplot, psych, quadprog, LDRTools, Matrix, methods
Published: 2021-06-15
Author: Jerome Mariette [aut, cre], Celine Brouard [aut], Remi Flamary [aut], Nathalie Vialaneix [aut]
Maintainer: Jerome Mariette <jerome.mariette at inrae.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Citation: mixKernel citation info
Materials: NEWS
CRAN checks: mixKernel results

Downloads:

Reference manual: mixKernel.pdf
Package source: mixKernel_0.7.tar.gz
Windows binaries: r-devel: mixKernel_0.7.zip, r-release: mixKernel_0.7.zip, r-oldrel: mixKernel_0.7.zip
macOS binaries: r-release (arm64): not available, r-release (x86_64): mixKernel_0.7.tgz, r-oldrel: mixKernel_0.7.tgz
Old sources: mixKernel archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mixKernel to link to this page.