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Abstract

The crch package provides functions for maximum likelihood estimation of censored
or truncated regression models with conditional heteroscedasticity along with suitable
standard methods to summarize the fitted models and compute predictions, residuals, etc.
The supported distributions include left- or right-censored or truncated Gaussian, logistic,
or student-t distributions with potentially different sets of regressors for modeling the
conditional location and scale. The models and their R implementation are introduced and
illustrated by numerical weather prediction tasks using precipitation data for Innsbruck
(Austria).

Keywords: censored regression, truncated regression, tobit model, Cragg model, heteroscedas-
ticity, R.

1. Introduction

Censored or truncated response variables occur in a variety of applications. Censored data
arise if exact values are only reported in a restricted range. Data may fall outside this range
but are reported at the range limits. In contrast, if data outside this range are omitted
completely we call it truncated. E.g., consider wind measurements with an instrument that
needs a certain minimum wind speed to start working. If wind speeds below this minimum
are recorded as ≤minimum the data is censored. If only wind speeds exceeding this limit
are reported and those below are omitted the data is truncated. Even if the generating
process is not as clear, censoring or truncation can be useful to consider limited data such as
precipitation observations.

The tobit (Tobin 1958) and truncated regression (Cragg 1971) models are common linear
regression models for censored and truncated conditionally normally distributed responses
respectively. Beside truncated data, truncated regression is also used in two-part models
(Cragg 1971) for censored type data: A binary (e.g., probit) regression model fits the ex-
ceedance probability of the lower limit and a truncated regression model fits the value given
the lower limit is exceeded.

Usually linear models like the tobit or truncated regression models assume homoscedastic-
ity which means that the variance of an underlying normal distribution does not depend on
covariates. However, sometimes this assumption does not hold and models that can con-
sider conditional heteroscedasticity should be used. Such models have been proposed, e.g.,
for generalized linear models (Nelder and Pregibon 1987; Smyth 1989), generalized additive

http://CRAN.R-project.org/package=crch
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models (Rigby and Stasinopoulos 1996, 2005), or beta regression (Cribari-Neto and Zeileis
2010). There also exist several R packages with functions implementing the above models,
e.g., dglm (Dunn and Smyth 2014), glmx (Zeileis, Koenker, and Doebler 2013), gamlss (Rigby
and Stasinopoulos 2005), betareg (Grün, Kosmidis, and Zeileis 2012) amongst others.

The crch package provides functions to fit censored and truncated regression models that
consider conditional heteroscedasticity. It has a convenient interface to estimate these models
with maximum likelihood and provides several methods for analysis and prediction. In ad-
dition to the typical conditional Gaussian distribution assumptions it also allows for logistic
and student-t distributions with heavier tails.

The outline of the paper is as follows. Section 2 describes the censored and truncated regres-
sion models, and Section 3 presents their R implementation. Section 4 illustrates the package
functions with numerical weather prediction data of precipitation in Innsbruck (Austria) and
finally Section 5 summarizes the paper.

2. Regression models

For both, censored and truncated regression, a normalized latent response (y∗ − µ)/σ is
assumed to follow a certain distribution D

y∗ − µ
σ

∼ D (1)

The location parameter µ and a link function of the scale parameter g(σ) are assumed to
relate linearly to covariates x = (1, x1, x2, . . .)

> and z = (1, z1, z2, . . .)
>:

µ = x>β (2)

g(σ) = z>γ (3)

where β = (β0, β1, β2, . . .)
> and γ = (γ0, γ1, γ2, . . .)

> are coefficient vectors. The link function
g(·) : R+ 7→ R is a strictly increasing and twice differentiable function; e.g., the logarithm
(i.e., g(σ) = log(σ)) is a well suited function. Although they only map to R+, the identity
g(σ) = σ or the quadratic function g(σ) = σ2 can be usefull as well. However, problems in
the numerical optimization can occur.

Commonly D is the standard normal distribution so that y∗ is assumed to be normally
distributed with mean µ and variance σ2. D might also be assumed to be a standard logistic
or a student-t distribution if heavier tails are required. The tail weight of the student-t
distribution can be controlled by the degrees of freedom ν which can either be set to a certain
value or estimated as an additional parameter. To assure positive values, log(ν) is modeled
in the latter case.

log(ν) = δ (4)

2.1. Censored regression (tobit)

The exact values of censored responses are only known in an interval defined by left and right .
Observation outside this interval are mapped to the interval limits

y =


left y∗ ≤ left

y∗ left < y∗ < right

right y∗ ≥ right

(5)

http://CRAN.R-project.org/package=dglm
http://CRAN.R-project.org/package=glmx
http://CRAN.R-project.org/package=gamlss
http://CRAN.R-project.org/package=betareg
http://CRAN.R-project.org/package=crch
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The coefficients β, γ, and δ (Equations 2–4) can be estimated by maximizing the sum over
the data set of the log-likelihood function log(fcens(y, µ, σ)), where

fcens(y, µ, σ) =


F
(
left−µ
σ

)
y ≤ left

f
(y−µ

σ

)
left < y < right(

1− F
(
right−µ

σ

))
y ≥ right

(6)

F () and f() are the cumulative distribution function and the probability density function of
D, respectively. If D is the normal distribution this model is a heteroscedastic variant of the
tobit model (Tobin 1958).

2.2. Truncated regression

Truncated responses occur when latent responses below or above some thresholds are omitted.

y = y∗|left < y∗ < right (7)

Then y follows a truncated distribution with probability density function

ftr (y, µ, σ) =
f
(y−µ

σ

)
F
(
right−µ

σ

)
− F

(
left−µ
σ

) (8)

In that case the coefficients β, γ, and δ can be estimated by maximizing the sum over the
data set of the log-likelihood function

log(ftr (y, µ, σ)) (9)

3. R implementation

The models from the previous section can both be fitted with the crch() function provided
by the crch package. This function takes a formula and data, sets up the likelihood function,
gradients and Hessian matrix and uses optim() to maximize the likelihood. It returns an S3
object for which various standard methods are available. We tried to build an interface as
similar to glm() as possible to facilitate the usage.

crch(formula, data, subset, na.action, weights, offset, link.scale = "log",

dist = "gaussian", df = NULL, left = -Inf, right = Inf, truncated = FALSE,

control = crch.control(...), model = TRUE, x = FALSE, y = FALSE, ...)

Here formula, data, na.action, weights, and offset have their standard model frame
meanings (e.g., Chambers and Hastie 1992). However, as provided in the Formula package
(Zeileis and Croissant 2010) formula can have two parts separated by ‘|’ where the first part
defines the location model and the second part the scale model. E.g., with y ~ x1 + x2 |

z1 + z2 the location model is specified by y ~ x1 + x2 and the scale model by ~ z1 + z2.
Known offsets can be specified for the location model by offset or for both, the location and
scale model, inside formula, i.e., y ~ x1 + x2 + offset(x3) | z1 + z2 + offset(z3).

http://CRAN.R-project.org/package=crch
http://CRAN.R-project.org/package=Formula
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The link function g(·) for the scale model can be specified by link.scale. The default is
"log", also supported are "identity" and "quadratic". Furthermore, an arbitrary link
function can be specified by supplying an object of class "link-glm" containing linkfun,
linkinv, mu.eta, and name. Furthermore it must contain the second derivative dmu.deta if
analytical Hessians are employed.

dist specifies the used distribution. Currently supported are "gaussian" (the default),
"logistic", and "student". If dist = "student" the degrees of freedom can be set by
the df argument. If set to NULL (the default) the degrees of freedom are estimated by maxi-
mum likelihood (Equation 4).

left and right define the lower and upper censoring or truncation points respectively. The
logical argument truncated defines whether a censored or truncated model is estimated.
Note that also a wrapper function trch() exists that is equivalent to crch() but with default
truncated = TRUE.

The maximum likelihood estimation is carried out with the R function optim() using control
options specified in crch.control(). By default the "BFGS" method is applied. If no starting
values are supplied, coefficients from lm() are used as starting values for the location part.
For the scale model the intercept is initialized with the link function of the residual standard
deviation from lm() and the remaining scale coefficients are initialized with 0. If the degrees of
freedom of a student-t distribution are estimated they are initialized by 10. For the student-t
distribution with estimated degrees of freedom the covariance matrix estimate is derived from
the numerical Hessian returned by optim(). For fixed degrees of freedom and Gaussian
and logistic distributions the covariance matrix is derived analytically. However, by setting
hessian = TRUE the numerical Hessian can be employed for those models as well.

Finally model, y, and x specify whether the model frame, response, or model matrix are
returned.

The returned model fit of class "crch" is a list similar to "glm" objects. Some components
like coefficients are lists with elements for location, scale, and degrees of freedom. The
package also provides a set of extractor methods for "crch" objects that are listed in Table 1.

Additional to the crch() function and corresponding methods the crch package also pro-
vides probability density, cumulative distribution, random number, and quantile functions
for censored and truncated normal, logistic, and student-t distributions. Furthermore it also
provides a function hxlr() (heteroscedastic extended logistic regression) to fit heteroscedastic
interval-censored regression models (Messner, Zeileis, Mayr, and Wilks 2014c).

Note that alternative to crch() heteroscedastic censored and truncated models could also
be fitted by the R package gamlss (Rigby and Stasinopoulos 2005) with the add-on packages
gamlss.cens and gamlss.tr. However, for the special case of linear censored of truncated
regression models with Gaussian, logistic, or student-t distribution crch provides a fast and
convenient interface and various useful methods for analysis and prediction.

4. Example

This section shows a weather forecast example application of censored and truncated regres-
sion models fitted with crch(). Weather forecasts are usually based on numerical weather
prediction (NWP) models that take the current state of the atmosphere and compute future
weather by numerically simulating the most important atmospheric processes. However, be-

http://CRAN.R-project.org/package=crch
http://CRAN.R-project.org/package=gamlss
http://CRAN.R-project.org/package=gamlss.cens
http://CRAN.R-project.org/package=gamlss.tr
http://CRAN.R-project.org/package=crch
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Function Description

print() Print function call and estimated coefficients.
summary() Standard regression output (coefficient estimates, standard errors, par-

tial Wald tests). Returns an object of class "summary.crch" containing
summary statistics which has a print() method.

coef() Extract model coefficients where model specifies whether a single vec-
tor containing all coefficients ("full") or the coefficients for the location
("location"), scale ("scale") or degrees of freedom ("df") are returned.

vcov() Variance-covariance matrix of the estimated coefficients.

predict() Predictions for new data where "type" controls whether location
("response"/"location"), scale ("scale") or quantiles ("quantile")
are predicted. Quantile probabilities are specified by at.

fitted() Fitted values for observed data where "type" controls whether location
("location") or scale ("scale") values are returned.

residuals() Extract various types of residuals where type can be "standardized"

(default), "pearson", "response", or "quantile".

terms() Extract terms of model components.
logLik() Extract fitted log-likelihood.

Table 1: Functions and methods for objects of class "crch".

cause of uncertain initial conditions and unknown or unresolved processes these numerical
predictions are always subject to errors. To estimate these errors, many weather centers
provide so called ensemble forecasts: several NWP runs that use different initial conditions
and model formulations. Unfortunately these ensemble forecasts cannot consider all error
sources so that they are often still biased and uncalibrated. Thus they are often calibrated
and corrected for systematic errors by statistical post-processing.

One popular post-processing method is heteroscedastic linear regression where the ensemble
mean is used as regressor for the location and the ensemble standard deviation or variance is
used as regressor for the scale (e.g., Gneiting, Raftery, Westveld, and Goldman 2005). Because
not all meteorological variables can be assumed to be normally distributed this idea has also
been extended to other distributions including truncated regression for wind (Thorarinsdottir
and Gneiting 2010) and censored regression for wind power (Messner, Zeileis, Broecker, and
Mayr 2014b) or precipitation (Messner, Mayr, Wilks, and Zeileis 2014a).

The following example applies heteroscedastic censored regression with a logistic distribution
assumption to precipitation data in Innsbruck (Austria). Furthermore, a two-part model tests
whether the occurrence of precipitation and the precipitation amount are driven by the same
process.

First, the crch package is loaded together with an included precipitation data set with forecasts
and observations for Innsbruck (Austria)

R> library("crch")

R> data("RainIbk", package = "crch")

The data.frame RainIbk contains observed 3 day-accumulated precipitation amounts (rain)
and the corresponding 11 member ensemble forecasts of total accumulated precipitation

http://CRAN.R-project.org/package=crch
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amount between 5 and 8 days in advance (rainfc.1, rainfc.2, . . . rainfc.11). The row-
names are the end date of the 3 days over which the precipitation amounts are accumulated
respectively; i.e., the respective forecasts are issued 8 days before these dates.

In previous studies it has been shown that it is of advantage to model the square root of
precipitation rather than precipitation itself. Thus all precipitation amounts are square rooted
before ensemble mean and standard deviation are derived. Furthermore, events with no
variation in the ensemble are omitted:

R> RainIbk <- sqrt(RainIbk)

R> RainIbk$ensmean <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, mean)

R> RainIbk$enssd <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, sd)

R> RainIbk <- subset(RainIbk, enssd > 0)

A scatterplot of rain against ensmean

R> plot(rain ~ ensmean, data = RainIbk, pch = 19, col = gray(0, alpha = 0.2))

R> abline(0,1, col = "red")

indicates a linear relationship that differs from a 1-to-1 relationship (Figure 1). Precipitation
is clearly non-negative with many zero observations. Thus censored regression or a two-part
model are suitable to estimate this relationship.

First we fit a logistic censored model for rain with ensmean as regressor for the location and
log(enssd) as regressor for the scale.

R> CRCH <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0,

+ dist = "logistic")

R> summary(CRCH)

Call:

crch(formula = rain ~ ensmean | log(enssd), data = RainIbk,

dist = "logistic", left = 0)

Standardized residuals:

Min 1Q Median 3Q Max

-3.5780 -0.6554 0.1673 1.1189 7.4990

Coefficients (location model):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.85266 0.06903 -12.35 <2e-16 ***

ensmean 0.78686 0.01921 40.97 <2e-16 ***

Coefficients (scale model with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.11744 0.01460 8.046 8.58e-16 ***

log(enssd) 0.27055 0.03503 7.723 1.14e-14 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 1: Square rooted precipitation amount against ensemble mean forecasts. A line with
intercept 0 and slope 1 is shown in red and the censored regression fit in blue.

Distribution: logistic

Log-likelihood: -8921 on 4 Df

Number of iterations in BFGS optimization: 15

Both, ensmean and log(enssd) are highly significant according to the Wald test performed
by the summary() method. The location model is also shown in Figure 1:

R> abline(coef(CRCH)[1:2], col = "blue")

If we compare this model to a constant scale model (tobit model with logistic distribution)

R> CR <- crch(rain ~ ensmean, data = RainIbk, left = 0, dist = "logistic")

R> cbind(AIC(CR, CRCH), BIC = BIC(CR, CRCH)[,2])

df AIC BIC

CR 3 17905.69 17925.22

CRCH 4 17850.30 17876.33

we see that the scale model clearly improves the fit regarding AIC and BIC.

A comparison of the logistic model with a Gaussian and a student-t model

R> CRCHgau <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0,

+ dist = "gaussian")
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Figure 2: Probability density functions of a student-t distribution with 9.56 degrees of free-
dom, a logistic, and a normal distribution. The densities of the logistic and normal distribution
are scaled to facilitate comparison.

R> CRCHstud <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0,

+ dist = "student")

R> AIC(CRCH, CRCHgau, CRCHstud)

df AIC

CRCH 4 17850.30

CRCHgau 4 17897.23

CRCHstud 5 17850.65

confirms the logistic distribution assumption. Note, that with the estimated degrees of free-
dom of 9.56 the student-t distribution resembles the (scaled) logistic distribution quite well
(see Figure 2).

In the censored model the occurrence of precipitation and precipitation amount are assumed
to be driven by the same process. To test this assumption we compare the censored model with
a two-part model consisting of a heteroscedastic logit model and a truncated regression model
with logistic distribution assumption. For the heteroscedastic logit model we use hetglm()

from the glmx package and for the truncated model we employ the crch() function with the
argument truncated = TRUE.

R> library("glmx")

R> BIN <- hetglm(I(rain > 0) ~ ensmean | log(enssd), data = RainIbk,

+ family = binomial(link = "logit"))

R> TRCH <- crch(rain~ensmean | log(enssd), data = RainIbk, subset = rain > 0,

+ left = 0, dist = "logistic", truncated = TRUE)

http://CRAN.R-project.org/package=glmx
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In the heteroscedastic logit model, the intercept of the scale model is not identified. Thus,
the location coefficients of the censored and truncated regression models have to be scaled to
compare them with the logit model.

R> cbind("CRCH" = c(coef(CRCH, "location")/exp(coef(CRCH, "scale"))[1],

+ coef(CRCH, "scale")[2]),

+ "BIN" = coef(BIN),

+ "TRCH" = c(coef(TRCH, "location")/exp(coef(TRCH, "scale"))[1],

+ coef(TRCH, "scale")[2]))

CRCH BIN TRCH

(Intercept) -0.7581811 -1.0181715 0.2635421

ensmean 0.6996699 0.7789091 0.5455966

log(enssd) 0.2705476 0.4539908 0.2326229

The different (scaled) coefficients indicate that different processes drive the occurrence of
precipitation and precipitation amount. This is also confirmed by AIC and BIC that are
clearly better for the two-part model than for the censored model:

R> loglik <- c("Censored" = logLik(CRCH), "Two-Part" = logLik(BIN) + logLik(TRCH))

R> df <- c(4, 7)

R> aic <- -2 * loglik + 2 * df

R> bic <- -2 * loglik + log(nrow(RainIbk)) * df

R> cbind(df, AIC = aic, BIC = bic)

df AIC BIC

Censored 4 17850.30 17876.33

Two-Part 7 17744.82 17790.39

Finally, we can use the fitted models to predict future precipitation. Therefore assume that
the current NWP forecast of square rooted precipitation has an ensemble mean of 1.8 and an
ensemble standard deviation of 0.9. A median precipitation forecast of the censored model
can then easily be computed with

R> newdata <- data.frame(ensmean = 1.8, enssd = 0.9)

R> predict(CRCH, newdata, type = "quantile", at = 0.5)^2

1

0.3177399

Note, that the prediction has to be squared since all models fit the square root of precipitation.
In the two-part model the probability to stay below a threshold q is composed of

P (y ≤ q) = 1− P (y > 0) + P (y > 0) · P (y ≤ q|y > 0) (10)

Thus median precipitation equals the (P (y > 0) − 0.5)/P (y > 0)-quantile of the truncated
distribution.
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R> p <- predict(BIN, newdata)

R> predict(TRCH, newdata, type = "quantile", at = (p - 0.5)/p)^2

1

0.4156972

Probabilities to exceed, e.g., 5mm can be predicted with cumulative distribution functions
(e.g., pclogis(), ptlogis()) that are also provided in the crch package.

R> mu <- predict(CRCH, newdata, type = "location")

R> sigma <- predict(CRCH, newdata, type = "scale")

R> pclogis(sqrt(5), mu, sigma, lower.tail = FALSE, left = 0)

[1] 0.177983

R> mu <- predict(TRCH, newdata, type = "location")

R> sigma <- predict(TRCH, newdata, type = "scale")

R> p * ptlogis(sqrt(5), mu, sigma, lower.tail = FALSE, left = 0)

1

0.2108671

Note, that pclogis() could also be replaced by plogis() since they are equivalent between
left and right .

Clearly, other types of model misspecification or model generalization (depending on the point
of view) for the classical tobit model are possible. In addition to heteroscedasticity, the type
of response distribution, and the presence of hurdle effects as explored in the application here,
further aspects might have to be addressed by the model. Especially in economics and the
social sciences sample selection effects might be present in the two-part model which can be
addressed (in the homoscedastic normal case) using the R packages sampleSelection (Toomet
and Henningsen 2008) or mhurdle (Croissant, Carlevaro, and Hoareau 2013). Furthermore,
the scale link function or potential nonlinearities in the regression functions could be assessed,
e.g., using the gamlss suite of packages (Stasinopoulos and Rigby 2007).

5. Summary

Censored and truncated response models are common in econometrics and other statistical
applications. However, often the homoscedasticity assumption of these models is not fulfilled.
This paper presented the crch package that provides functions to fit censored or truncated re-
gression models with conditional heteroscedasticity. It supports Gaussian, logistic or student-t
distributed censored or truncated responses and provides various convenient methods for anal-
ysis and prediction. To illustrate the package we showed that heteroscedastic censored and
truncated models are well suited to improve precipitation forecasts.

References

http://CRAN.R-project.org/package=crch
http://CRAN.R-project.org/package=sampleSelection
http://CRAN.R-project.org/package=mhurdle
http://CRAN.R-project.org/package=gamlss
http://CRAN.R-project.org/package=crch


Jakob W. Messner, Georg J. Mayr, Achim Zeileis 11

Chambers JM, Hastie TJ (1992). Statistical Models in S. Chapman & Hall, London.

Cragg JG (1971). “Some Statistical Models for Limited Dependent Variables with Application
to the Demand for Durable Goods.”Econometrica, 39(5), 829–844. doi:10.2307/1909582.

Cribari-Neto F, Zeileis A (2010). “Beta Regression in R.” Journal of Statistical Software,
34(2), 1–24. URL http://www.jstatsoft.org/v34/i02/.

Croissant Y, Carlevaro F, Hoareau S (2013). mhurdle: Multiple hurdle Tobit models. R
package version 1.0-1, URL http://CRAN.R-project.org/package=mhurdle.

Dunn PK, Smyth GK (2014). dglm: Double Generalized Linear Models. R package version
1.8.1, URL http://CRAN.R-project.org/package=dglm.

Gneiting T, Raftery AE, Westveld AH, Goldman T (2005). “Calibrated Probabilistic Forecast-
ing Using Ensemble Model Output Statistics and Minimum CRPS Estimation.” Monthly
Weather Review, 133(5), 1098–1118. doi:http://dx.doi.org/10.1175/MWR2904.1.

Grün B, Kosmidis I, Zeileis A (2012). “Extended Beta Regression in R: Shaken, Stirred,
Mixed, and Partitioned.” Journal of Statistical Software, 48(11), 1–25.

Messner JW, Mayr GJ, Wilks DS, Zeileis A (2014a). “Extending Extended Logistic Regression:
Extended vs. Separate vs. Ordered vs. Censored.” Monthly Weather Review, 142, 3003–
3014. doi:10.1175/MWR-D-13-00355.1.

Messner JW, Zeileis A, Broecker J, Mayr GJ (2014b). “Probabilistic Wind Power Forecasts
with an Inverse Power Curve Transformation and Censored Regression.” Wind Energy,
17(11), 1753–1766. doi:10.1002/we.1666.

Messner JW, Zeileis A, Mayr GJ, Wilks DS (2014c). “Heteroscedastic Extended Logistic
Regression for Post-Processing of Ensemble Guidance.” Monthly Weather Review, 142,
448–456. doi:http://dx.doi.org/10.1175/MWR-D-13-00271.1.

Nelder JA, Pregibon D (1987). “An Extended Quasi-Likelihood Function.” Biometrika, 74(2),
221–232. doi:10.2307/2336136.

Rigby RA, Stasinopoulos DM (1996). “Mean and Dispersion Additive Models.” In W Härdle,
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