copre: Tools for Nonparametric Martingale Posterior Sampling

Performs Bayesian nonparametric density estimation using Martingale posterior distributions and including the Copula Resampling (CopRe) algorithm. Also included are a Gibbs sampler for the marginal Mixture of Dirichlet Process (MDP) model and an extension to include full uncertainty quantification via a new Polya completion algorithm for the MDP. The CopRe and Polya samplers generate random nonparametric distributions as output, leading to complete nonparametric inference on posterior summaries. Routines for calculating arbitrary functionals from the sampled distributions are included as well as an important algorithm for finding the number and location of modes, which can then be used to estimate the clusters in the data using, for example, k-means. Implements work developed in Moya B., Walker S. G. (2022) <doi:10.48550/arxiv.2206.08418>, Fong, E., Holmes, C., Walker, S. G. (2021) <doi:10.48550/arxiv.2103.15671>, and Escobar M. D., West, M. (1995) <doi:10.1080/01621459.1995.10476550>.

Version: 0.1.0
Depends: R (≥ 2.10)
Imports: Rcpp, pracma, ggplot2, abind, dirichletprocess
LinkingTo: Rcpp, RcppArmadillo, BH
Published: 2022-08-16
Author: Blake Moya [cre, aut], The University of Texas at Austin [cph, fnd]
Maintainer: Blake Moya <blakemoya at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Materials: README
CRAN checks: copre results


Reference manual: copre.pdf


Package source: copre_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): copre_0.1.0.tgz, r-oldrel (arm64): copre_0.1.0.tgz, r-release (x86_64): copre_0.1.0.tgz, r-oldrel (x86_64): copre_0.1.0.tgz


Please use the canonical form to link to this page.