TCIU: Spacekime Analytics, Time Complexity and Inferential Uncertainty

Provide the core functionality to transform longitudinal data to complex-time (kime) data using analytic and numerical techniques, visualize the original time-series and reconstructed kime-surfaces, perform model based (e.g., tensor-linear regression) and model-free classification and clustering methods in the book Dinov, ID and Velev, MV. (2021) "Data Science: Time Complexity, Inferential Uncertainty, and Spacekime Analytics", De Gruyter STEM Series, ISBN 978-3-11-069780-3. <>. The package includes 18 core functions which can be separated into three groups. 1) draw longitudinal data, such as Functional magnetic resonance imaging(fMRI) time-series, and forecast or transform the time-series data. 2) simulate real-valued time-series data, e.g., fMRI time-courses, detect the activated areas, report the corresponding p-values, and visualize the p-values in the 3D brain space. 3) Laplace transform and kimesurface reconstructions of the fMRI data.

Version: 1.2.6
Depends: R (≥ 3.5.0)
Imports: stats, ggplot2, dplyr, tidyr, RColorBrewer, fancycut, scales, plotly, gridExtra, ggpubr, ICSNP, rrcov, geometry, DT, forecast, fmri, pracma, zoo, extraDistr, parallel, foreach, spatstat.explore, spatstat.geom, cubature, doParallel, reshape2, MultiwayRegression, interp
Suggests: oro.nifti, magrittr, knitr, rmarkdown
Published: 2024-05-17
DOI: 10.32614/CRAN.package.TCIU
Author: Yongkai Qiu [aut], Zhe Yin [aut], Jinwen Cao [aut], Yupeng Zhang [aut], Yuyao Liu [aut], Rongqian Zhang [aut], Yueyang Shen [aut, cre], Rouben Rostamian [ctb], Ranjan Maitra [ctb], Daniel Rowe [ctb], Daniel Adrian [ctb] (gLRT method for complex-valued fMRI statistics), Yunjie Guo [aut], Ivo Dinov [aut]
Maintainer: Yueyang Shen <petersyy at>
License: GPL-3
NeedsCompilation: yes
SystemRequirements: GNU make
CRAN checks: TCIU results


Reference manual: TCIU.pdf
Vignettes: Laplace Transform and Kimesurface Transform of TCIU Analytics
Workflow of TCIU Analytics


Package source: TCIU_1.2.6.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): TCIU_1.2.6.tgz, r-oldrel (arm64): TCIU_1.2.6.tgz, r-release (x86_64): TCIU_1.2.6.tgz, r-oldrel (x86_64): TCIU_1.2.6.tgz
Old sources: TCIU archive


Please use the canonical form to link to this page.