SLTCA: Scalable and Robust Latent Trajectory Class Analysis

Conduct latent trajectory class analysis with longitudinal data. Our method supports longitudinal continuous, binary and count data. For more methodological details, please refer to Hart, K.R., Fei, T. and Hanfelt, J.J. (2020), Scalable and robust latent trajectory class analysis using artificial likelihood. Biometrics <doi:10.1111/biom.13366>.

Version: 0.1.0
Depends: R (≥ 3.3.0)
Imports: stats, geepack, VGAM, Matrix, mvtnorm
Published: 2020-09-23
DOI: 10.32614/CRAN.package.SLTCA
Author: Kari Hart [aut], Teng Fei ORCID iD [cre, aut], John Hanfelt ORCID iD [aut]
Maintainer: Teng Fei <tfei at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: SLTCA results


Reference manual: SLTCA.pdf


Package source: SLTCA_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): SLTCA_0.1.0.tgz, r-oldrel (arm64): SLTCA_0.1.0.tgz, r-release (x86_64): SLTCA_0.1.0.tgz, r-oldrel (x86_64): SLTCA_0.1.0.tgz


Please use the canonical form to link to this page.