
Package ‘RFpredInterval’
September 14, 2021

Type Package

Title Prediction Intervals with Random Forests and Boosted Forests

Version 1.0.4

Description Implements various prediction interval methods with random forests and boosted forests.
The package has two main functions: pibf() produces prediction intervals with boosted forests
(PIBF) as described in Alakus et al. (2021) <arXiv:2106.08217> and rfpi() builds 15 distinct
variations of prediction intervals with random forests (RFPI) pro-
posed by Roy and Larocque (2020)
<doi:10.1177/0962280219829885>.

Depends R (>= 3.6.0)

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports ranger, data.table, hdrcde, parallel, data.tree, DiagrammeR

Suggests knitr, rmarkdown, testthat

URL https://github.com/calakus/RFpredInterval

BugReports https://github.com/calakus/RFpredInterval/issues

NeedsCompilation yes

Author Cansu Alakus [aut, cre],
Denis Larocque [aut],
Aurelie Labbe [aut],
Hemant Ishwaran [ctb] (Author of included randomForestSRC codes),
Udaya B. Kogalur [ctb] (Author of included randomForestSRC codes)

Maintainer Cansu Alakus <cansu.alakus@hec.ca>

Repository CRAN

Date/Publication 2021-09-14 15:20:02 UTC

1

https://arxiv.org/abs/2106.08217
https://doi.org/10.1177/0962280219829885
https://github.com/calakus/RFpredInterval
https://github.com/calakus/RFpredInterval/issues

2 RFpredInterval-package

R topics documented:

RFpredInterval-package . 2
BostonHousing . 3
piall . 4
pibf . 6
plot.pi.piall . 8
rfpi . 9

Index 13

RFpredInterval-package

RFpredInterval: A package for building prediction intervals with ran-
dom forests and boosted forests

Description

RFpredInterval provides methods to build prediction intervals with random forests. The methods
provided in the package are Prediction Intervals with Boosted Forests (PIBF) proposed by Alakus
et al. (2021) and 15 distinct variations to build PIs proposed by Roy and Larocque (2020). RF-
predInterval includes two main functions: pibf() and rfpi(). pibf() applies the PIBF method
and it uses the CRAN package ranger (Wright and Ziegler, 2017) to fit random forests. rfpi()
applies the 15 variations proposed by Roy and Larocque (2020). For rfpi(), RFpredInterval uses
randomForestSRC package (Ishwaran and Kogalur, 2021) by freezing at the version 2.11.0. The
custom splitting rule feature is utilised to apply the splitting rules L1 and SPI. For the least-squares
splitting rule, both randomForestSRC and ranger packages are applicable.

RFpredInterval functions

pibf rfpi piall plot.pi.piall

References

Alakus, C., Larocque, D., and Labbe, A. (2021). RFpredInterval: An R Package for Prediction
Intervals with Random Forests and Boosted Forests. arXiv preprint arXiv:2106.08217.

Ishwaran H, Kogalur U (2021). Fast Unified Random Forests for Survival, Regression, and Classifi-
cation (RF-SRC). R package version 2.11.0, https://cran.r-project.org/package=randomForestSRC.

Roy, M. H., & Larocque, D. (2020). Prediction intervals with random forests. Statistical methods
in medical research, 29(1), 205-229. doi:10.1177/0962280219829885.

Wright MN, Ziegler A (2017). “ranger: A Fast Implementation of Random Forests for High Dimen-
sional Data in C++ and R.” Journal of Statistical Software, 77(1), 1–17. doi:10.18637/jss.v077.i01.

https://cran.r-project.org/package=randomForestSRC

BostonHousing 3

BostonHousing Boston housing data set

Description

Housing data for 506 census tracts of Boston from the 1970 census. The data set contains the
original data by Harrison and Rubinfeld (1979).

Usage

BostonHousing

Format

A data frame with three 506 rows observations on 14 variables. medv is the target variable. The
variables are as follows:

• crim: per capita crime rate by town

• zn: proportion of residential land zoned for lots over 25,000 sq.ft

• indus: proportion of non-retail business acres per town

• chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

• nox: nitric oxides concentration (parts per 10 million)

• rm: average number of rooms per dwelling

• age: proportion of owner-occupied units built prior to 1940

• dis: weighted distances to five Boston employment centres

• rad: index of accessibility to radial highways

• tax: full-value property-tax rate per USD 10,000

• ptratio: pupil-teacher ratio by town

• b: 1000(B - 0.63)^2 where B is the proportion of blacks by town

• lstat: percentage of lower status of the population

• medv: median value of owner-occupied homes in USD 1000’s

Examples

load data
data(BostonHousing, package = "RFpredInterval")

4 piall

piall Prediction intervals with all methods

Description

Constructs prediction intervals with the 16 methods (PIBF method implemented in pibf() and 15
method variations implemented in rfpi()).

Usage

piall(
formula,
traindata,
testdata,
alpha = 0.05,
num.trees = 2000,
mtry = ceiling(px/3)

)

Arguments

formula Object of class formula or character describing the model to fit.
traindata Training data of class data.frame.
testdata Test data of class data.frame.
alpha Confidence level. (1 - alpha) is the desired coverage level. The default is alpha

= 0.05 for the 95% prediction interval.
num.trees Number of trees. The default is num.trees = 2000
mtry Number of variables randomly selected as candidates for splitting a node. The

default is rounded up px/3 where px is the number of variables.

Value

A list with the following components:

PIBF Prediction intervals for test data with PIBF method. A list containing lower and
upper bounds.

LS_LM Prediction intervals for test data with least-squares (LS) splitting rule and clas-
sical method (LM). A list containing lower and upper bounds.

LS_SPI Prediction intervals for test data with least-squares (LS) splitting rule and short-
est PI (SPI) method. A list containing lower and upper bounds.

LS_Quant Prediction intervals for test data with least-squares (LS) splitting rule and quan-
tiles method. A list containing lower and upper bounds.

LS_HDR Prediction intervals for test data with least-squares (LS) splitting rule and highest
density region (HDR) method. A list containing lower and upper bounds of
prediction interval for each test observation. There may be multiple PIs for a
single observation.

piall 5

LS_CHDR Prediction intervals for test data with least-squares (LS) splitting rule and con-
tiguous HDR method. A list containing lower and upper bounds.

L1_LM Prediction intervals for test data with L1 splitting rule and classical method
(LM). A list containing lower and upper bounds.

L1_SPI Prediction intervals for test data with L1 splitting rule and shortest PI (SPI)
method. A list containing lower and upper bounds.

L1_Quant Prediction intervals for test data with L1 splitting rule and quantiles method. A
list containing lower and upper bounds.

L1_HDR Prediction intervals for test data with L1 splitting rule and highest density region
(HDR) method. A list containing lower and upper bounds of prediction interval
for each test observation. There may be multiple PIs for a single observation.

L1_CHDR Prediction intervals for test data with L1 splitting rule and contiguous HDR
method. A list containing lower and upper bounds.

SPI_LM Prediction intervals for test data with shortest PI (SPI) splitting rule and classical
method (LM). A list containing lower and upper bounds.

SPI_SPI Prediction intervals for test data with shortest PI (SPI) splitting rule and shortest
PI (SPI) method. A list containing lower and upper bounds.

SPI_Quant Prediction intervals for test data with shortest PI (SPI) splitting rule and quan-
tiles method. A list containing lower and upper bounds.

SPI_HDR Prediction intervals for test data with shortest PI (SPI) splitting rule and highest
density region (HDR) method. A list containing lower and upper bounds of
prediction interval for each test observation. There may be multiple PIs for a
single observation.

SPI_CHDR Prediction intervals for test data with shortest PI (SPI) splitting rule and con-
tiguous HDR method. A list containing lower and upper bounds.

pred_pibf Bias-corrected random forest predictions for test data.

pred_ls Random forest predictions for test data with least-squares (LS) splitting rule.

pred_l1 Random forest predictions for test data with L1 splitting rule.

pred_spi Random forest predictions for test data with shortest PI (SPI) splitting rule.

test_response If available, true response values of the test data. Otherwise, NULL.

See Also

pibf rfpi plot.pi.piall

Examples

load example data
data(BostonHousing, package = "RFpredInterval")
set.seed(2345)

define train/test split
testindex <- 1
trainindex <- sample(2:nrow(BostonHousing), size = 50, replace = FALSE)

6 pibf

traindata <- BostonHousing[trainindex,]
testdata <- BostonHousing[testindex,]

construct 95% PI with 16 methods for the first observation in testdata
out <- piall(formula = medv ~ ., traindata = traindata,

testdata = testdata, num.trees = 50)

pibf Prediction intervals with boosted forests

Description

Constructs prediction intervals with boosted forests.

Usage

pibf(
formula,
traindata,
testdata,
alpha = 0.05,
calibration = c("cv", "oob", FALSE),
coverage_range = c(1 - alpha - 0.005, 1 - alpha + 0.005),
numfolds = 5,
params_ranger = list(num.trees = 2000, mtry = ceiling(px/3), min.node.size = 5,

replace = TRUE)
)

Arguments

formula Object of class formula or character describing the model to fit.
traindata Training data of class data.frame.
testdata Test data of class data.frame.
alpha Confidence level. (1 - alpha) is the desired coverage level. The default is alpha

= 0.05 for the 95% prediction interval.
calibration Calibration method for finding working level of alpha, i.e. αw. Options are

"cv", "oob", and FALSE standing for calibration with cross-validation, OOB
calibration, and no calibration, respectively. See below for details. The default
is "cv".

coverage_range The allowed target calibration range for coverage level. αw is selected such that
the "cv" or "oob" coverage is within coverage_range.

numfolds Number of folds for calibration with cross-validation. The default is 5 folds.
params_ranger List of parameters that should be passed to ranger. In the default parameter set,

num.trees = 2000, mtry = px/3 (rounded up), min.node.size = 5, replace =
TRUE. See ranger for possible parameters.

pibf 7

Value

A list with the following components:

pred_interval Prediction intervals for test data. A list containing lower and upper bounds.

test_pred Bias-corrected random forest predictions for test data.

alphaw Working level of alpha, i.e. αw. If calibration = FALSE, it returns NULL.

Details

Calibration process

Let (1−α) be the target coverage level. The goal of the calibration is to find the value of αw, which
is the working level of α called by Roy and Larocque (2020), such that the coverage level of the PIs
for the training observations is closest to the target coverage level. Two calibration procedures are
provided: calibration with cross-validation and out-of-bag (OOB) calibration.

1. In calibration with CV, we apply k-fold cross-validation to form prediction intervals for the
training observations. In each fold, we split the original training data set into training and
testing sets. For the training set, we train a one-step boosted random forest and compute the
OOB residuals. Then, for each observation in the testing set, we build a PI. After completing
CV, we compute the coverage level with the constructed PIs and if the coverage is not within
the acceptable coverage range (coverage_range), then we apply a grid search to find the
αw such that αw is the closest to the target α among the set of αw’s that ensures the target
coverage level for the constructed PIs. Once we find the αw, we use this level to build the PI
for the new observations.

2. The OOB calibration procedure is proposed by Roy and Larocque (2020) and it is the default
calibration procedure of rfpi(). See details section of rfpi() for the detailed explanation of
this calibration procedure.

In terms of computational time, OOB calibration is faster than calibration with CV. However, em-
pirical results show that OOB calibration may result in conservative prediction intervals. Therefore,
the recommended calibration procedure for the PIBF method is calibration with CV.

References

Alakus, C., Larocque, D., and Labbe, A. (2021). RFpredInterval: An R Package for Prediction
Intervals with Random Forests and Boosted Forests. arXiv preprint arXiv:2106.08217.

Roy, M. H., & Larocque, D. (2020). Prediction intervals with random forests. Statistical methods
in medical research, 29(1), 205-229. doi:10.1177/0962280219829885.

See Also

rfpi piall

8 plot.pi.piall

Examples

load example data
data(BostonHousing, package = "RFpredInterval")
set.seed(2345)

define train/test split
testindex <- 1:10
trainindex <- sample(11:nrow(BostonHousing), size = 100, replace = FALSE)
traindata <- BostonHousing[trainindex,]
testdata <- BostonHousing[testindex,]
px <- ncol(BostonHousing) - 1

construct 95% PI with "cv" calibration using 5-folds
out <- pibf(formula = medv ~ ., traindata = traindata,

testdata = testdata, calibration = "cv", numfolds = 5,
params_ranger = list(num.trees = 40))

get the PI for the first observation in the testdata
c(out$pred_interval$lower[1], out$pred_interval$upper[1])

get the bias-corrected random forest predictions for testdata
out$test_pred

construct 90% PI with "oob" calibration
out2 <- pibf(formula = medv ~ ., traindata = traindata,

testdata = testdata, alpha = 0.1, calibration = "oob",
coverage_range = c(0.89,91), params_ranger = list(num.trees = 40))

get the PI for the testdata
out2$pred_interval

get the working level of alpha (alphaw)
out2$alphaw

plot.pi.piall Plot constructed prediction intervals for ’piall’ objects

Description

Plots the 16 constructed PIs obtained with piall() for a test observation. For each method, the
red point presents the point prediction and blue line shows the constructed prediction interval for
the test observation. If the true response of the test observation is known, it is demonstrated with a
dashed vertical line. Note that we may have multiple prediction intervals with the HDR PI method.

Usage

S3 method for class 'piall'
plot.pi(x, test_id = 1, sort = TRUE, show_response = TRUE, ...)

rfpi 9

Arguments

x An object of class 'piall'.

test_id Integer value specifying the test observation to be plotted. The default is 1.

sort Should the prediction intervals be sorted according to their lengths in the plot?
The default is TRUE.

show_response Should the true response value of the test observation (if available) be displayed
in the plot?

... Optional arguments to be passed to other methods.

Value

Invisibly, the prediction intervals and point predictions that were plotted for the test observation.

See Also

piall

Examples

load example data
data(BostonHousing, package = "RFpredInterval")
set.seed(2345)

define train/test split
testindex <- 1
trainindex <- sample(2:nrow(BostonHousing), size = 50, replace = FALSE)
traindata <- BostonHousing[trainindex,]
testdata <- BostonHousing[testindex,]

build 95% PIs with all 16 methods for the first observation in testdata
out <- piall(formula = medv ~ ., traindata = traindata,

testdata = testdata, num.trees = 50)

plot the constructed PIs for test_id = 1 with all methods
plot.pi(out, test_id = 1)

rfpi Prediction intervals with random forests

10 rfpi

Description

Constructs prediction intervals with 15 distinct variations proposed by Roy and Larocque (2020).
The variations include two aspects: The method used to build the forest and the method used to
build the prediction interval. There are three methods to build the forest, (i) least-squares (LS), (ii)
L1 and (iii) shortest prediction interval (SPI) from the CART paradigm. There are five methods for
constructing prediction intervals, classical method, shortest prediction interval, quantile method,
highest density region, and contiguous HDR.

Usage

rfpi(
formula,
traindata,
testdata,
alpha = 0.05,
split_rule = c("ls", "l1", "spi"),
pi_method = c("lm", "spi", "quant", "hdr", "chdr"),
calibration = TRUE,
rf_package = c("rfsrc", "ranger"),
params_rfsrc = list(ntree = 2000, mtry = ceiling(px/3), nodesize = 5, samptype =

"swr"),
params_ranger = list(num.trees = 2000, mtry = ceiling(px/3), min.node.size = 5,

replace = TRUE),
params_calib = list(range = c(1 - alpha - 0.005, 1 - alpha + 0.005), start = (1 -

alpha), step = 0.01, refine = TRUE)
)

Arguments

formula Object of class formula or character describing the model to fit.

traindata Training data of class data.frame.

testdata Test data of class data.frame.

alpha Confidence level. (1 - alpha) is the desired coverage level. The default is alpha
= 0.05 for the 95% prediction interval.

split_rule Split rule for building a forest. Options are "ls" for CART with least-squares
(LS) splitting rule, "l1" for CART with L1 splitting rule, "spi" for CART with
shortest prediction interval (SPI) splitting rule. The default is "ls".

pi_method Methods for building a prediction interval. Options are "lm" for classical method,
"spi" for shortest prediction interval, "quant" for quantile method, "hdr" for
highest density region, and "chdr" for contiguous HDR. The default is to use
all methods for PI construction. Single method or a subset of methods can be
applied.

calibration Apply OOB calibration for finding working level of alpha, i.e. αw. See below
for details. The default is TRUE.

rf_package Random forest package that can be used for RF training. Options are "rfsrc"
for randomForestSRC and "ranger" for ranger packages. Split rule "ls" can

rfpi 11

be used with both packages. However, "l1" and "spi" split rules can only be
used with "rfsrc". The default is "rfsrc".

params_rfsrc List of parameters that should be passed to randomForestSRC. In the default pa-
rameter set, ntree = 2000, mtry = px/3 (rounded up), nodesize = 5, samptype
= "swr". See randomForestSRC for possible parameters.

params_ranger List of parameters that should be passed to ranger. In the default parameter set,
num.trees = 2000, mtry = px/3 (rounded up), min.node.size = 5, replace =
TRUE. See ranger for possible parameters.

params_calib List of parameters for calibration procedure. range is the allowed target cali-
bration range for coverage level. The value that provides a coverage level within
the range is chosen as αw. start is the initial coverage level to start calibration
procedure. step is the coverage step size for each calibration iteration. refine
is the gradual decrease in step value when close to target coverage level, the
default is TRUE which allows gradual decrease.

Value

A list with the following components:

lm_interval Prediction intervals for test data with the classical method. A list containing
lower and upper bounds.

spi_interval Prediction intervals for test data with SPI method. A list containing lower and
upper bounds.

hdr_interval Prediction intervals for test data with HDR method. A list containing lower and
upper bounds of prediction interval for each test observation. There may be
multiple PIs for a single observation.

chdr_interval Prediction intervals for test data with contiguous HDR method. A list containing
lower and upper bounds.

quant_interval Prediction intervals for test data with quantiles method. A list containing lower
and upper bounds.

test_pred Random forest predictions for test data.

alphaw Working level of alpha, i.e. αw. A numeric array for the PI methods entered
with pi_method. If calibration = FALSE, it returns NULL.

split_rule Split rule used for building the random forest.

rf_package Random forest package that was used for RF training.

Details

Calibration process
The calibration procedure uses the "Bag of Observations for Prediction" (BOP) idea. BOP for a new
observation is built with the set inbag observations that are in the same terminal nodes as the new
observation. The calibration procedure uses the BOPs constructed for the training observations.
BOP for a training observation is built using only the trees where this training observation is out-
of-bag (OOB).

Let (1−α) be the target coverage level. The goal of the calibration is to find the value of αw, which
is the working level of α called by Roy and Larocque (2020), such that the coverage level of the

12 rfpi

prediction intervals for the training observations is closest to the target coverage level. The idea is
to find the value of αw using the OOB-BOPs. Once found, (1−αw) becomes the level used to build
the prediction intervals for the new observations.

References

Roy, M. H., & Larocque, D. (2020). Prediction intervals with random forests. Statistical methods
in medical research, 29(1), 205-229. doi:10.1177/0962280219829885.

See Also

pibf piall

Examples

load example data
data(BostonHousing, package = "RFpredInterval")
set.seed(2345)

define train/test split
trainindex <- sample(1:nrow(BostonHousing),

size = round(nrow(BostonHousing) * 0.7), replace = FALSE)
traindata <- BostonHousing[trainindex,]
testdata <- BostonHousing[-trainindex,]
px <- ncol(BostonHousing) - 1

contruct 90% PI with "l1" split rule and "spi" PI method with calibration
out <- rfpi(formula = medv ~ ., traindata = traindata,

testdata = testdata, alpha = 0.1, calibration = TRUE,
split_rule = "l1", pi_method = "spi", params_rfsrc = list(ntree = 50),
params_calib = list(range = c(0.89, 0.91), start = 0.9, step = 0.01,
refine = TRUE))

get the PI with "spi" method for first observation in the testdata
c(out$spi_interval$lower[1], out$spi_interval$upper[1])

get the random forest predictions for testdata
out$test_pred

get the working level of alpha (alphaw)
out$alphaw

contruct 95% PI with "ls" split rule, "lm" and "quant" PI methods
with calibration and use "ranger" package for RF training
out2 <- rfpi(formula = medv ~ ., traindata = traindata,

testdata = testdata, split_rule = "ls", pi_method = c("lm", "quant"),
rf_package = "ranger", params_ranger = list(num.trees = 50))

get the PI with "quant" method for the testdata
cbind(out2$quant_interval$lower, out2$quant_interval$upper)

Index

∗ datasets
BostonHousing, 3

BostonHousing, 3

piall, 2, 4, 7, 9, 12
pibf, 2, 5, 6, 12
plot.pi (plot.pi.piall), 8
plot.pi.piall, 2, 5, 8

rfpi, 2, 5, 7, 9
RFpredInterval-package, 2

13

	RFpredInterval-package
	BostonHousing
	piall
	pibf
	plot.pi.piall
	rfpi
	Index

