EValue: Sensitivity Analyses for Unmeasured Confounding and Other Biases in Observational Studies and Meta-Analyses

Conducts sensitivity analyses for unmeasured confounding, selection bias, and measurement error (individually or in combination; VanderWeele & Ding (2017) <doi:10.7326/M16-2607>; Smith & VanderWeele (2019) <doi:10.1097/EDE.0000000000001032>; VanderWeele & Li (2019) <doi:10.1093/aje/kwz133>; Smith & VanderWeele (2021) <arXiv:2005.02908>). Also conducts sensitivity analyses for unmeasured confounding in meta-analyses (Mathur & VanderWeele (2020a) <doi:10.1080/01621459.2018.1529598>; Mathur & VanderWeele (2020b) <doi:10.1097/EDE.0000000000001180>) and for additive measures of effect modification (Mathur et al., under review).

Version: 4.1.2
Imports: stats, graphics, ggplot2 (≥ 2.2.1), metafor, methods, boot, MetaUtility, dplyr
Suggests: testthat, knitr, rmarkdown
Published: 2021-04-01
Author: Maya B. Mathur [cre, aut], Louisa H. Smith [aut], Peng Ding [aut], Tyler J. VanderWeele [aut]
Maintainer: Maya B. Mathur <mmathur at stanford.edu>
License: GPL-2
NeedsCompilation: no
Citation: EValue citation info
Materials: README
In views: MetaAnalysis
CRAN checks: EValue results


Reference manual: EValue.pdf
Vignettes: E-values for meta-analyses
Examples of multiple-bias sensitivity analysis
E-values for multiple biases
E-values for selection bias
E-values for unmeasured confounding
Package source: EValue_4.1.2.tar.gz
Windows binaries: r-devel: EValue_4.1.2.zip, r-release: EValue_4.1.2.zip, r-oldrel: EValue_4.1.2.zip
macOS binaries: r-release (arm64): EValue_4.1.2.tgz, r-release (x86_64): EValue_4.1.2.tgz, r-oldrel: EValue_4.1.2.tgz
Old sources: EValue archive


Please use the canonical form https://CRAN.R-project.org/package=EValue to link to this page.