wxgenR - GHCN CONUS evaluation - in sample

Subhrendu Gangopadhyay, Lindsay Bearup, David Woodson, Andrew Verdin, Eylon Shamir, Eve Halper, Marketa McGuire

2024-07-12

A weather generator is a numerical tool that resamples a daily time series of precipitation, temperature, and season many times, while preserving observed or projected characteristics of importance, such as the statistics of the transition between wet and dry days. The resulting large group, or ensemble, of likely rainfall and temperature time series represents a range of possible amounts, daily patterns, and seasonality. This weather generator is, to our knowledge, novel in that it includes seasons (up to 26) in training the simulation algorithm.

The goal of wxgenR is to provide users a tool that can simulate, with fidelity, an ensemble of precipitation and temperature based on training data that could include, for example, station based point measurements, grid cell values derived from models or remotely sensed data, or basin averages. The incorporation of seasonality as a covariate in the training algorithm allows users to examine the effects of shifts in seasonality due to climate warming (e.g., earlier snowmelt seasons or prolonged summer dry periods). wxgenR is an effective and robust scenario planning tool for a wide variety of potential futures.

Running wxgenR

All that is needed to run wxgenR is a single time series of precipitation, temperature, and season. Up to 20 seasons may be defined, but most users will likely only need two to four based on their study region. For example, wxgenR is provided with basin-average data from nine different GHCN gauges within the conterminous United States. Within the data used to train the weather generator, four standard seasons are set (spring, summer, autumn, winter) for each day in the time series. The varying statistics of each season will impact the resulting simulations.

Tutorial

For example, using the GHCN precipitation, temperature, and season data, we can generate simulated precipitation and temperature for any desired time length and ensemble size. Your variables must be named as the following: ‘year’, ‘month’, ‘day’, ‘prcp’, ‘temp’, ‘season’, whether they are input as a dataframe or a text file. All input variables must be contained within the same dataframe or text file. If inputting a text file, it must be comma separated (.csv). The weather generator can handle NA values for precipitation or temperature, but all other variables should be numeric values.

Step 1: Load your data

library(wxgenR)
library(tidyr)
library(reshape2)
library(ggpubr)
library(lubridate)
library(dplyr)
# library(data.table)
library(moments)
library(seas)
library(padr)
#> Warning: package 'padr' was built under R version 4.2.3
library(hydroGOF)
#> Warning: package 'hydroGOF' was built under R version 4.2.3
#> Loading required package: zoo
#> Warning: package 'zoo' was built under R version 4.2.1
#> 
#> Attaching package: 'zoo'
#> The following objects are masked from 'package:base':
#> 
#>     as.Date, as.Date.numeric
library(SpecsVerification)
#> Warning: package 'SpecsVerification' was built under R version 4.2.3
# library(sm)
library(ggridges)
#> Warning: package 'ggridges' was built under R version 4.2.3

Step 2: Select your run settings and run the weather generator

Use the variables within the wx() function like syr and eyr (start and end year) to set the temporal boundaries from which to sample, otherwise, if left empty the start and end years will default to the beginning and end of your training data. Use nsim to set the length (in years) of your simulated weather, and nrealz to set the ensemble size (number of traces).

The variable wwidth will set the sampling window for each day of year (Jan. 1 through Dec. 31) for every year in the simulation. The sampling window for each day of year is +/- wwidth + 1, effectively sampling wwidth number of days before and after each day of year, including that day of year. A lower value for wwidth will sample fewer surrounding days and a higher value will sample more days, resulting in dampened and heightened variability, respectively. Typical setting of wwidth is between 1 and 15, resulting in a daily sampling window of 3 days and 31 days, respectively. Generally, higher and lower values of wwidth result in higher and lower variance, respectively, in the simulated data.

For example, to simulate precipitation on day 1 of the simulation (Jan. 1 of year 1), with wwidth = 1 (a 3-day window), the algorithm will sample days in the training record between (and including) December 31 and January 2 (for all years in the training record). For day 2 of the simulation (Jan. 2 of year 1), the algorithm will sample days in the training record between January 1 and January 3. Simulation day 3 (Jan. 3) will sample between January 2 and January 4, and so on. Increasing wwidth to 2 (a 5-day window) will sample between December 30 and January 3 for Jan. 1 simulations, December 31 to January 4 for Jan. 2, and January 1 to January 5 for Jan. 3, and so on.

In some cases, the wwidth will be automatically increased through an adaptive window width if precipitation occurred on a given day but there were less than two daily precipitation values over 0.01 inches during the window for that day. wwidth will adaptively increase by 1 until two or more daily precipitation values over 0.01 inches are in each window. Adaptive window width is most likely to occur in regions with high aridity, dry seasons, a small initial value of wwidth is used, or if the number of years in the training data is relatively short (e.g., less than 30 years). To display the results of the adaptive window width, set awinFlag = T.

Here, our training data spans January 1, 2000 through the end of the GHCN record so syr is set to be 2000 or greater. We want a simulation length of 23-years (nsim) in order to match the length of the historical record and 2 traces in our ensemble (nrealz = 2) for brevity. Sampling for each day of the year will sample from the preceding 3-days, the day of, and the following 3-days (wwidth = 3) for a total window size of 7-days.

We may also want to increase the variability of our simulated precipitation by sampling outside the historical envelope with an Epanechnikov Kernel (ekflag = T). For more details on the Epanechnikov kernel and its use in a weather generator, see Rajagopalan et al. (1996). Setting tempPerturb = T will increase the variability of the simulated temperature by adding random noise from a normal distribution fit using a mean of zero and a standard deviation equal to the monthly standard deviation of simulated temperature residuals. Given that simulated daily temperature at time t is a function of temperature(t-1), cosine(t), sine(t), precipitation occurrence(t), and monthly mean temperature(t), the standard deviation of daily residuals from this model is calculated for each month and used to add random noise to the simulated temperature. The temperature simulation approach is inspired by- and adapted from- Verdin et al. (2015, 2018).

Since the training data has units of inches and degrees Fahrenheit for precipitation and temperature, respectively, we must set unitSystem = "U.S. Customary".

Pre-processing was done on the GHCN station data using the following code (not run here):

# path = ".../path to GHCN station data/"
# files = list.files(path, full.names = T)

# n = length(files)
# 
# fileList = vector("list", n)
# 
# i = 1
# for(i in 1:n){
#   
#   fi = read.csv(files[i])
#   
#   staNum = fi$STATION[1]
#   staNam = fi$NAME[1]
#   
#   fi.p = fi %>%
#   dplyr::select(DATE, PRCP, TMAX, TMIN) %>% 
#   mutate(DATE = ymd(DATE)) %>%
#   pad(interval = "day") %>%
#   mutate(year = year(DATE), month = month(DATE), day = day(DATE),
#          prcp = PRCP, temp = (TMAX + TMIN)/2, season = month) %>%
#   mutate(daymonth = strftime(DATE, format="%m-%d")) %>%
#   transform(t.clim = ave(temp, daymonth, FUN=function(x) mean(x, na.rm=TRUE))) %>%
#   transform(temp = ifelse(is.na(temp),t.clim,temp)) %>%
#   dplyr::select(year, month, day, prcp, temp, season)
#   
#   if(fi.p$month[1] != 1 | fi.p$day[1] != 1){
#     fi.p = subset(fi.p, year > fi.p$year[1])
#   }
#   
#   if(tail(fi.p$month, 1) != 12 | tail(fi.p$day, 1) != 31){
#     fi.p = subset(fi.p, year < tail(fi.p$year, 1))
#   }
#   
#   out = list(staNum, staNam, fi.p)
#   names(out) = c("Station ID", "Station Name", "Data")
#   
#   fileList[[i]] = out
# 
# }

Read in pre-processed GHCN station data

data(stationData)

glimpse(stationData)
#> List of 9
#>  $ :List of 3
#>   ..$ Station ID  : chr "USC00162534"
#>   ..$ Station Name: chr "DONALDSONVILLE 4 SW, LA US"
#>   ..$ Data        :'data.frame': 47481 obs. of  6 variables:
#>   .. ..$ year  : num [1:47481] 1893 1893 1893 1893 1893 ...
#>   .. ..$ month : num [1:47481] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:47481] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:47481] NA NA NA NA NA NA 0 NA NA NA ...
#>   .. ..$ temp  : num [1:47481] 47 53.1 60 51.8 57 ...
#>   .. ..$ season: num [1:47481] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ :List of 3
#>   ..$ Station ID  : chr "USC00050372"
#>   ..$ Station Name: chr "ASPEN 1 SW, CO US"
#>   ..$ Data        :'data.frame': 15340 obs. of  6 variables:
#>   .. ..$ year  : num [1:15340] 1981 1981 1981 1981 1981 ...
#>   .. ..$ month : num [1:15340] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:15340] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:15340] 0 0 0 0 0 NA 0 0 0 0 ...
#>   .. ..$ temp  : num [1:15340] 32 32.5 35.5 33 32 21.5 23.5 27 29 29 ...
#>   .. ..$ season: num [1:15340] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ :List of 3
#>   ..$ Station ID  : chr "USC00080236"
#>   ..$ Station Name: chr "ARCHBOLD BIO STATION, FL US"
#>   ..$ Data        :'data.frame': 19723 obs. of  6 variables:
#>   .. ..$ year  : num [1:19723] 1969 1969 1969 1969 1969 ...
#>   .. ..$ month : num [1:19723] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:19723] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:19723] 0 0 0 0.18 0.28 0.43 0 0 0 0 ...
#>   .. ..$ temp  : num [1:19723] 70 53.5 57 64.5 58 50 47 51.5 56.5 64 ...
#>   .. ..$ season: num [1:19723] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ :List of 3
#>   ..$ Station ID  : chr "USC00440766"
#>   ..$ Station Name: chr "BLACKSBURG NATIONAL WEATHER SERVICE OFFICE, VA US"
#>   ..$ Data        :'data.frame': 25567 obs. of  6 variables:
#>   .. ..$ year  : num [1:25567] 1953 1953 1953 1953 1953 ...
#>   .. ..$ month : num [1:25567] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:25567] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:25567] 0 0.1 0.35 0.27 0 0.08 0 0.41 0.1 0.4 ...
#>   .. ..$ temp  : num [1:25567] 36 34.5 31.5 28 27 28.5 46 40 38 38.5 ...
#>   .. ..$ season: num [1:25567] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ :List of 3
#>   ..$ Station ID  : chr "USW00014606"
#>   ..$ Station Name: chr "BANGOR INTERNATIONAL AIRPORT, ME US"
#>   ..$ Data        :'data.frame': 25567 obs. of  6 variables:
#>   .. ..$ year  : num [1:25567] 1953 1953 1953 1953 1953 ...
#>   .. ..$ month : num [1:25567] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:25567] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:25567] 0 0 0.78 0.01 0 0.1 0 0 0.03 0.18 ...
#>   .. ..$ temp  : num [1:25567] 15 21.5 31.5 23.5 15 12 17 14 13.5 24.5 ...
#>   .. ..$ season: num [1:25567] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ :List of 3
#>   ..$ Station ID  : chr "USW00094240"
#>   ..$ Station Name: chr "QUILLAYUTE AIRPORT, WA US"
#>   ..$ Data        :'data.frame': 20454 obs. of  6 variables:
#>   .. ..$ year  : num [1:20454] 1967 1967 1967 1967 1967 ...
#>   .. ..$ month : num [1:20454] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:20454] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:20454] 0.08 2.03 0.56 0.5 0.05 0.4 2.2 1.13 0 1.23 ...
#>   .. ..$ temp  : num [1:20454] 39.5 43.5 43.5 37.5 34.5 37.5 43.5 48 46 47.5 ...
#>   .. ..$ season: num [1:20454] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ :List of 3
#>   ..$ Station ID  : chr "USC00346386"
#>   ..$ Station Name: chr "NORMAN 3 SSE, OK US"
#>   ..$ Data        :'data.frame': 46751 obs. of  6 variables:
#>   .. ..$ year  : num [1:46751] 1895 1895 1895 1895 1895 ...
#>   .. ..$ month : num [1:46751] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:46751] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:46751] 0.47 0 0 0 0.01 0 0 0 0 0 ...
#>   .. ..$ temp  : num [1:46751] 29 33.5 37.5 33.5 50.5 43.5 37.5 23 27 38.5 ...
#>   .. ..$ season: num [1:46751] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ :List of 3
#>   ..$ Station ID  : chr "USC00028795"
#>   ..$ Station Name: chr "TUCSON 17 NW, AZ US"
#>   ..$ Data        :'data.frame': 14610 obs. of  6 variables:
#>   .. ..$ year  : num [1:14610] 1983 1983 1983 1983 1983 ...
#>   .. ..$ month : num [1:14610] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:14610] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:14610] 0 0 0 0 0 0 0 0 0 0 ...
#>   .. ..$ temp  : num [1:14610] 43.5 47.5 54 49.5 54.5 56 53.5 55 57 54.5 ...
#>   .. ..$ season: num [1:14610] 1 1 1 1 1 1 1 1 1 1 ...
#>  $ :List of 3
#>   ..$ Station ID  : chr "USC00472314"
#>   ..$ Station Name: chr "EAGLE RIVER, WI US"
#>   ..$ Data        :'data.frame': 30316 obs. of  6 variables:
#>   .. ..$ year  : num [1:30316] 1940 1940 1940 1940 1940 1940 1940 1940 1940 1940 ...
#>   .. ..$ month : num [1:30316] 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ day   : int [1:30316] 1 2 3 4 5 6 7 8 9 10 ...
#>   .. ..$ prcp  : num [1:30316] 0 0 0 0 0 0 0 0 0.12 0 ...
#>   .. ..$ temp  : num [1:30316] 5.5 7.5 10 -5.5 6.5 15.5 0.5 2 4.5 18.5 ...
#>   .. ..$ season: num [1:30316] 1 1 1 1 1 1 1 1 1 1 ...

Rename data

fileList = stationData
n = length(stationData)

run loop of wxgenR on each station


datList = vector("list", n)

nsim = 23   #number of simulation years
nrealz = 2 #number of traces in ensemble
  
run = T

if(run == T){

  i = 1
  for(i in 1:n){
    
    cat(paste0("Starting: ", fileList[[i]][[2]], "\n"))
    
    dat.i = fileList[[i]][[3]]
    
    trnDat = subset(dat.i, year >= 2000)
       
    verDat = subset(dat.i, year >= 2000)
    
    z = wx(trainingData = trnDat,
           nsim = nsim, nrealz = nrealz, aseed = 20190409,
           wwidth = 3, unitSystem = "U.S. Customary", ekflag = T,
           awinFlag = T, tempPerturb = T, numbCores = 2)
  
    # out = list(fileList[[i]][[1]], fileList[[i]][[2]], trnYrs, trnDat, verDat, z)
  
    out = list(fileList[[i]][[1]], fileList[[i]][[2]], verDat, z)
    
    datList[[i]] = out
    
  }

}
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...
#> ...Simulate precipitation occurrence and temperature...
#> 1
#> 2
#> ...Simulate precipitation amount...

The wx() function will return a list containing both your input/training data, and a variety of processed outputs, named here as the variable z. Within z, dat.d is the original input data as well as some intermediary variables. simyr1 contains the years within your training data that were sampled to generate simulated values for each trace. X is the occurrence of daily precipitation for each trace, where 1 and 0 indicate the presence and absence of precipitation, respectively. Xseas is the season index for each day and trace. Xpdate shows which days from the training data were sampled for each simulated day and trace, if precipitation was simulated to occur on a given day. Xpamt is the simulated precipitation amount for each day and trace. Xtemp is the simulated temperature for each day and trace.

Generally, Xpamt and Xtemp will be of most interest to users as these are the desired outputs of simulated daily precipitation and temperature.

Option to create output directories for plots and data (not run)

outTag = "inSample"

outDir = paste0(".../path to output directory/", outTag)
dir.create(outDir)

outDirPlots = paste0(".../path to output directory/", outTag, "/plots/")
dir.create(outDirPlots)

outDirPlotsSta = paste0(".../path to output directory/", outTag, "/plots/stations/")
dir.create(outDirPlotsSta)

Option to save simulation data or read in previously created data (not run)

if(run == T){
  saveRDS(datList, paste0(outDir,"/trainingData_and_simResults.Rds"))
}else if(run == F){
  datList = readRDS(paste0(outDir,"/trainingData_and_simResults.Rds"))
}

Step 3: Analyze simulated weather

First, use modified approach from writeSim function to post-process/format output


# z = datList[[1]][[4]]
# verDat = datList[[1]][[3]]

postProcess = function(z, verDat = NULL){

  #parse variables from wx() output
  dat.d = z$dat.d
  simyr1 = z$simyr1
  X = z$X
  Xseas = z$Xseas
  Xpdate = z$Xpdate
  Xpamt = z$Xpamt
  Xtemp = z$Xtemp
  
  #write simulation output
  #
  it1 <- seq(1, length(X[,1]), 366)
  it2 = it1+366-1
  
  #initialize storage
  sim.pcp = matrix(NA, nrow = nsim*366, ncol = nrealz+3)
  sim.tmp = matrix(NA, nrow = nsim*366, ncol = nrealz+3)
  sim.szn = matrix(NA, nrow = nsim*366, ncol = nrealz+3)
  
  #loop through realization
  irealz = 1
  for (irealz in 1:nrealz){
    
    outmat <- vector()
  
    #loop through simulation years
    isim = 1
    for (isim in 1:nsim){
      leapflag = FALSE
      ayr = simyr1[isim, irealz]
      if (leap_year(ayr)) leapflag = TRUE
      col1 = rep(isim, 366)        #column 1, simulation year
      d1 = ayr*10^4+01*10^2+01; d2 = ayr*10^4+12*10^2+31
      i1 = which(dat.d$date1 == d1)
      i2 = which(dat.d$date1 == d2)
      col2 = dat.d$date1[i1:i2]   #column 2, simulation date
      if (leapflag == FALSE) col2 = c(col2,NA)
      i1 = it1[isim]
      i2 = it2[isim]
      col3 = Xseas[i1:i2, irealz]  #column 3, simulation season
      col4 = X[i1:i2, irealz]      #column 4, precipitation occurrence
      col5 = Xpdate[i1:i2, irealz] #column 5, precipation resampling date
      col6 = Xpamt[i1:i2, irealz]  #column 6, resampled precipitation amount
      col7 = Xtemp[i1:i2, irealz]  #column7, simulated temperature
  
      #create time series of 'simulation day'
      sim.yr = rep(isim, length(col2))
      sim.month = month(ymd(col2))
      sim.day = day(ymd(col2))
  
      outmat = rbind(outmat, cbind(sim.yr, sim.month, sim.day, col6, col7, col3))
    } #isim
  
    colnames(outmat) = c("simulation year", "month", "day", "prcp", "temp", "season")
    
    if(irealz == 1){
      sim.pcp[,1:3] = outmat[,1:3]
      sim.tmp[,1:3] = outmat[,1:3]
      sim.szn[,1:3] = outmat[,1:3]
    }
    
      sim.pcp[,irealz+3] = outmat[,4]
      sim.tmp[,irealz+3] = outmat[,5]
      sim.szn[,irealz+3] = outmat[,6]
  
  } #irealz
  
  #format
  sim.pcp = formatting(df = sim.pcp, dat.d)
  sim.tmp = formatting(df = sim.tmp, dat.d)
  sim.szn = formatting(df = sim.szn, dat.d)
    
  #format training data
  if(is.null(verDat) == FALSE){
    
    verDat$date = ymd(paste(verDat$year, verDat$month, verDat$day, sep = "-"))

    verDat.p = verDat %>%
      mutate(yday = as.numeric(yday(date)),
           week = as.numeric(week(date))
           )
    
    #format training data
    # colnames(dat.d)[11] = "yday"
    obs.pcp = dplyr::select(verDat.p, year, month, day, week, date, yday, prcp)
    obs.pcp$prcp = replace_na(obs.pcp$prcp, 0)
    obs.tmp = dplyr::select(verDat.p, year, month, day, week, date, yday, temp)
    
  } else{
    
    #format training data
    colnames(dat.d)[11] = "yday"
    obs.pcp = dat.d[,c(1:3,8:9,11,4)]
    obs.tmp = dat.d[,c(1:3,8:9,11,5)]  
    
  }
    
  out = list(sim.pcp, sim.tmp, sim.szn, obs.pcp, obs.tmp)

  names(out) = c("sim.pcp", "sim.tmp", "sim.szn", "obs.pcp", "obs.tmp")
  
  return(out)
  
}

#Format dataframes for simulated precip, temperature, and season


# df = sim.pcp

formatting = function(df, dat.d){
  
  df = as.data.frame(df)
  
  colnames(df) = c("simulation year", "month", "day", paste0("Trace_", 1:nrealz))

  #remove 366 days for non-leap years
  df = drop_na(df, c(month, day))
  
  #assign simulation year to start at the same time as training data
  df$`simulation year` = df$`simulation year` + dat.d$year[1] - 1    
  
  #format date
  df$Date = ymd(paste(df$`simulation year`, df$month, df$day, sep = "-"))
  
  #remove years that aren't leap years
  # df = drop_na(df, Date)
  
  df = df %>%
    mutate(yday = as.numeric(yday(Date)),
           week = as.numeric(week(Date))) %>%
    relocate(c(Date,yday,week), .after = day) %>%
    reshape2::melt(id = 1:6)
    
  return(df)
}

if(run == T){

  datListProc = vector("list", n)
  
  i = 1
  for(i in 1:n){
    
    z = datList[[i]][[4]]
    
    verDat = datList[[i]][[3]]
    
    z.p = postProcess(z, verDat)
    
    z.p.c = list(z.p, datList[[i]][[1]], datList[[i]][[2]])
    
    datListProc[[i]] = z.p.c
    
  }

}
#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

#> Warning: 2 failed to parse.

Option to save post-processed simulation results or read in previously saved data (not run)

if(run == T){
  saveRDS(datListProc, paste0(outDir,"/simResultsPostProcessed.Rds"))
}else if(run == F){
  datListProc = readRDS(paste0(outDir,"/simResultsPostProcessed.Rds"))
}

Rename two stations for better readability

datListProc[[4]][[3]] = "BLACKSBURG NWS, VA US"
datListProc[[5]][[3]] = "BANGOR INTL AIRPORT, ME US"
# i = 1
# simDat = datListProc[[i]][[1]]$sim.tmp
# obsDat = datListProc[[i]][[1]]$obs.tmp
# Tag = "Temp"
# ID = datListProc[[i]][[2]]

i = 1
simDat = datListProc[[i]][[1]]$sim.pcp
obsDat = datListProc[[i]][[1]]$obs.pcp
Tag = "Precip"
ID = datListProc[[i]][[2]]

monthlyPlot = function(simDat, obsDat, Tag, ID){
  
  if(Tag == "Temp"){
    
    simM = simDat %>%
      drop_na() %>%
      group_by(variable, month, `simulation year`) %>%
      summarise(
        mean = mean(value, na.rm = T),
        max = max(value, na.rm = T),
        min = min(value, na.rm = T),
        sd = sd(value, na.rm = T),
        skew = skewness(value, na.rm = T)
        ) %>%
      ungroup()
    
    simMM <- simM %>%
      group_by(variable, month) %>%
      summarise(
        mean=mean(mean),
        max=mean(max),
        min=mean(min),
        sd=sqrt(mean(sd^2)),
        skew=mean(skew, na.rm=T)
        ) %>%
      ungroup()
    
    obs <- obsDat %>%
      drop_na() %>%
      group_by(month, year) %>%
      summarise(
        mean = mean(temp, na.rm = T),
        max = max(temp, na.rm = T),
        min = min(temp, na.rm = T),
        sd = sd(temp, na.rm = T),
        skew = skewness(temp, na.rm = T),
        ) %>%
      ungroup()
    
    obsMM <- obs %>%
      group_by(month) %>%
      summarise(
        mean = mean(mean, na.rm = T),
        max = mean(max, na.rm = T),
        min = mean(min, na.rm = T),
        sd = sqrt(mean(sd^2)),
        skew = mean(skew, na.rm=T)
        ) %>%
      mutate(variable = "Observed") %>%
      relocate(variable) %>%
      ungroup()
    
  # colnames(obsMM)[-1] = paste0("obs_", colnames(obsMM)[-1])
  
  }else if(Tag == "Precip"){
    
    simM = simDat %>%
      drop_na() %>%
      group_by(variable, month, `simulation year`) %>%
      summarise(
        sum = sum(value, na.rm = T),
        max = max(value, na.rm = T),
        min = min(value, na.rm = T),
        sd = sd(value, na.rm = T),
        skew = skewness(value, na.rm = T)
        ) %>%
      ungroup()  
    
      simMM <- simM %>%
        group_by(variable, month) %>%
        summarise(
          sum=mean(sum),
          max=mean(max),
          min=mean(min),
          sd=sqrt(mean(sd^2)),
          skew=mean(skew, na.rm = T)
          ) %>%
        ungroup()
      
      obs <- obsDat %>%
        drop_na() %>%
        group_by(month, year) %>%
        summarise(
          sum = sum(prcp, na.rm = T),
          max = max(prcp, na.rm = T),
          min = min(prcp, na.rm = T),
          sd = sd(prcp, na.rm = T),
          skew = skewness(prcp, na.rm = T)
          ) %>%
        ungroup()
    
      obsMM <- obs %>%
        group_by(month) %>%
        summarise(
          sum = mean(sum, na.rm = T),
          max = mean(max, na.rm = T),
          min = mean(min, na.rm = T),
          sd = sqrt(mean(sd^2)),
          skew = mean(skew, na.rm = T)
          ) %>%
        mutate(variable = "Observed") %>%
        relocate(variable) %>%
        ungroup()
    
  # colnames(obsMM)[-1] = paste0("obs_", colnames(obsMM)[-1])
  
  }
  
  densityData = data.frame(simM[,c(2,4)], Tag = "Simulated")
  densityData = bind_rows(densityData, data.frame(obs[,c(1,3)], Tag = "Observed"))
  
  df.comb = rbind(obsMM, simMM)
  
  #plotting --------------------------------
  
  if(Tag == "Temp"){
    
    p1 = ggplot(df.comb) + 
      geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = mean, group = month)) +
      geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = mean), color = "blue", size = 0.5) +
      geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = mean), color = "blue", size = 1.5, show.legend = T) +
      scale_colour_manual(values = c('blue'='blue'), labels = c('Observed')) +
      xlab("Month") + ylab("Temperature (°F)") +
      theme_bw() +
      theme(axis.title = element_text(face = "bold"),
            text=element_text(size=12),
            panel.grid.major = element_line(),
            legend.title=element_blank(),
            plot.title = element_text(size=8)
            ) +
      scale_x_continuous(breaks = 1:12) +
      ggtitle(paste0("Average Mean Monthly Temperature \n", ID))
    
    #monthly pdf
    p6 = ggplot(densityData) + 
        geom_density_ridges(aes(y = as.factor(month), x = mean, fill = Tag, color = Tag), alpha = 0.5) +
        scale_fill_manual(values = c("blue", "black"), labels = c("Observed", "Simulated")) +
        scale_color_manual(values = c("blue", "black"), guide = "none") +
        ylab("Month") + xlab("Temperature (°F)") +
        theme_bw() +
        theme(axis.title = element_text(face = "bold"),
              text=element_text(size=12),
              panel.grid.major = element_line(),
              legend.title=element_blank(),
              plot.title = element_text(size=8)
              ) +
        # scale_x_continuous(breaks = 1:12) +
        ggtitle(paste0("Average Monthly Temperature \n", ID))
    
  }else if(Tag == "Precip"){
    
     p1 = ggplot(df.comb) + 
      geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = sum, group = month)) +
      geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = sum), size = 0.5, color = "blue") +
      geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = sum), size = 1.5, color = "blue", show.legend = T) +
      scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
      xlab("Month") + ylab("Precipitation (inches)") +
      theme_bw() +
      theme(axis.title = element_text(face = "bold"),
            text=element_text(size=12),
            panel.grid.major = element_line(),
            legend.title=element_blank(),
            plot.title = element_text(size=8)
            ) +
      scale_x_continuous(breaks = 1:12) +
      ggtitle(paste0("Average Total Monthly Precipitation \n", ID))
     
    #monthly pdf
    p6 = ggplot(densityData) + 
        geom_density_ridges(aes(y = as.factor(month), x = sum, fill = Tag, color = Tag), alpha = 0.5) +
        scale_fill_manual(values = c("blue", "black"), labels = c("Observed", "Simulated")) +
        scale_color_manual(values = c("blue", "black"), guide = "none") +
        ylab("Month") + xlab("Precipitation (inches)") +
        theme_bw() +
        theme(axis.title = element_text(face = "bold"),
              text=element_text(size=12),
              panel.grid.major = element_line(),
              legend.title=element_blank(),
              plot.title = element_text(size=8)
              ) +
        # scale_x_continuous(breaks = 1:12) +
        ggtitle(paste0("Total Monthly Precipitation\n", ID))
    
  }

  if(Tag == "Temp"){
    yLabel = "Temperature "
    units = "(°F)"
  } else if(Tag == "Precip"){
    yLabel = "Precipitation "
    units = "(inches)"
  }
  
  #monthly SD
  p2 = ggplot(df.comb) + 
      geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = sd, group = month)) +
      geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = sd), size = 0.5, color = "blue", show.legend = T) +
      geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = sd), size = 1.5, color = "blue", show.legend = T) +
      scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
      xlab("Month") + ylab(paste0("Standard Deviation ", units)) +
      theme_bw() +
      theme(axis.title = element_text(face = "bold"),
            text=element_text(size=12),
            panel.grid.major = element_line(),
            legend.title=element_blank(),
            plot.title = element_text(size=8)
            ) +
      scale_x_continuous(breaks = 1:12) +
      ggtitle(paste0("Average Standard Deviation in Monthly ", yLabel, "\n", ID))
  
  
  #monthly Skew
  p3 = ggplot(df.comb) + 
      geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = skew, group = month)) +
      geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = skew), size = 0.5, color = "blue", show.legend = T) +
      geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = skew), size = 1.5, color = "blue", show.legend = T) +
      scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
      xlab("Month") + ylab("Skew (-)") +
      theme_bw() +
      theme(axis.title = element_text(face = "bold"),
            text=element_text(size=12),
            panel.grid.major = element_line(),
            legend.title=element_blank(),
            plot.title = element_text(size=8)
            ) +
      scale_x_continuous(breaks = 1:12) +
      ggtitle(paste0("Average Skew in Monthly ", yLabel, "\n", ID))
  
  #monthly max
  p4 = ggplot(df.comb) + 
      geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = max, group = month)) +
       geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = max), size = 0.5, color = "blue", show.legend = T) +
      geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = max), size = 1.5, color = "blue", show.legend = T) +
      scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
      xlab("Month") + ylab(paste0("Maximum ", units)) +
      theme_bw() +
      theme(axis.title = element_text(face = "bold"),
            text=element_text(size=12),
            panel.grid.major = element_line(),
            legend.title=element_blank(),
            plot.title = element_text(size=8)
            ) +
      scale_x_continuous(breaks = 1:12) +
      ggtitle(paste0("Average Monthly Maximum ", yLabel, "\n", ID))
  
  #monthly min
  p5 = ggplot(df.comb) + 
      geom_boxplot(data = subset(df.comb, variable != "Observed"), aes(x = month, y = min, group = month)) +
       geom_line(data = subset(df.comb, variable == "Observed"), aes(x = month, y = min), size = 0.5, color = "blue", show.legend = T) +
      geom_point(data = subset(df.comb, variable == "Observed"), aes(x = month, y = min), size = 1.5, color = "blue", show.legend = T) +
      scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
      xlab("Month") + ylab(paste0("Minimum ", units)) +
      theme_bw() +
      theme(axis.title = element_text(face = "bold"),
            text=element_text(size=12),
            panel.grid.major = element_line(),
            legend.title=element_blank(),
            plot.title = element_text(size=8)
            ) +
      scale_x_continuous(breaks = 1:12) +
      ggtitle(paste0("Average Monthly Minimum ", yLabel, "\n", ID))
  
  if(Tag == "Temp"){
    p.comb = ggarrange(p1, p2, p5, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "right")
  }else if(Tag == "Precip"){
    p.comb = ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "right")
  }  
  
  print(p.comb)
  
  #don't save plot to file
  # p.out = paste0(outDirPlotsSta, "/monthlyStats_", Tag, "_", ID, ".png")
  # ggsave(filename = p.out, plot = p.comb, device = "png", height = 8, width = 8, units = "in")

  
  #skew and pdf case study
  if(Tag == "Temp"){
    p.comb = ggarrange(p3, p6, nrow = 1, ncol = 2, common.legend = TRUE, legend = "right")
    print(p.comb)
  
    # p.out = paste0(outDirPlotsSta, "/monthly_skewAndPDF_", Tag, "_", ID, ".png")
    # ggsave(filename = p.out, plot = p.comb, device = "png", height = 4, width = 8, units = "in")
  }  
  
 

  
  df.comb.o = df.comb %>%
    mutate(ID = ID, Tag = Tag)
  
  return(df.comb.o)
  
}

plot monthly precipitation


df.monthly.pcp = NULL

for(i in 1:n){
  
  simDat = datListProc[[i]][[1]]$sim.pcp
  obsDat = datListProc[[i]][[1]]$obs.pcp
  Tag = "Precip"
  ID = datListProc[[i]][[3]]
  df.i = monthlyPlot(simDat, obsDat, Tag, ID)
  
  df.monthly.pcp = rbind(df.monthly.pcp, df.i)
  
}
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

plot monthly temperature


df.monthly.tmp = NULL

for(i in 1:n){
  
  simDat = datListProc[[i]][[1]]$sim.tmp
  obsDat = datListProc[[i]][[1]]$obs.tmp
  Tag = "Temp"
  ID = datListProc[[i]][[3]]
  df.i = monthlyPlot(simDat, obsDat, Tag, ID)
  
  df.monthly.tmp = rbind(df.monthly.tmp, df.i)

}
#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.
#> Picking joint bandwidth of 1.17

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> Picking joint bandwidth of 1.18

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> Picking joint bandwidth of 1.02

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> Picking joint bandwidth of 1.32

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> Picking joint bandwidth of 1.33

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> Picking joint bandwidth of 0.882

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> Picking joint bandwidth of 1.17

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> Picking joint bandwidth of 0.985

#> `summarise()` has grouped output by 'variable', 'month'. You can override using
#> the `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'month'. You can override using the
#> `.groups` argument.

#> Picking joint bandwidth of 1.59

#plotting - facet plot

  p1 = ggplot(df.monthly.tmp) + 
    geom_boxplot(data = subset(df.monthly.tmp, variable != "Observed"), aes(x = month, y = mean, group = month)) +
    geom_line(data = subset(df.monthly.tmp, variable == "Observed"), aes(x = month, y = mean), size = 0.5, color = "blue", show.legend = T) +
    geom_point(data = subset(df.monthly.tmp, variable == "Observed"), aes(x = month, y = mean), size = 1.5, color = "blue", show.legend = T) +
      scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +
    xlab("Month") + ylab("Temperature (°F)") +
    theme_bw() +
    theme(axis.title = element_text(face = "bold"),
          text=element_text(size=12),
          panel.grid.major = element_line(),
          legend.title=element_blank(),
          plot.title = element_text(size=10),
          strip.text.x = element_text(size = 8)
          ) +
    scale_x_continuous(breaks = 1:12) +
    ggtitle(paste0("Average Mean Monthly Temperature ")) +
    facet_wrap(~ID, scales = "free")

print(p1)


# p.out = paste0(outDirPlots, "/monthlyStats_faceted_temperature.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")

p1 = ggplot(df.monthly.pcp) + 
    geom_boxplot(data = subset(df.monthly.pcp, variable != "Observed"), aes(x = month, y = sum, group = month)) +
    geom_line(data = subset(df.monthly.pcp, variable == "Observed"), aes(x = month, y = sum), size = 0.5, color = "blue", show.legend = T) +
    geom_point(data = subset(df.monthly.pcp, variable == "Observed"), aes(x = month, y = sum), size = 1.5, color = "blue", show.legend = T) +
    scale_color_manual(values = c('blue'='blue'), labels = c('Observed')) +  
    xlab("Month") + ylab("Precipitation (inches)") +
    theme_bw() +
    theme(axis.title = element_text(face = "bold"),
          text=element_text(size=12),
          panel.grid.major = element_line(),
          legend.title=element_blank(),
          plot.title = element_text(size=10),
          strip.text.x = element_text(size = 8)
          ) +
    scale_x_continuous(breaks = 1:12) +
    ggtitle(paste0("Average Total Monthly Precipitation ")) +
    facet_wrap(~ID, scales = "free")

print(p1)


# p.out = paste0(outDirPlots, "/monthlyStats_faceted_precipitation.png")
# ggsave(filename = p.out, plot = p1, device = "png", height = 8, width = 8, units = "in")
  

#process and plot daily data

i = 1
simDat = datListProc[[i]][[1]]$sim.pcp
obsDat = datListProc[[i]][[1]]$obs.pcp
Tag = "Precip"
ID = datListProc[[i]][[2]]
Name = datListProc[[i]][[3]]

dailyPlot = function(simDat, obsDat, Tag, ID, Name){
  
  simD = simDat %>%
    drop_na() %>%
    group_by(variable, yday) %>%
    summarise(
      mean = mean(value, na.rm = T),
      max = max(value, na.rm = T),
      min = min(value, na.rm = T),
      sd = sd(value, na.rm = T),
      skew = skewness(value, na.rm = T)
      ) %>%
    ungroup()
    
  simDq <- simD %>%
    group_by(yday) %>%
    summarise(
      mean_q5 = quantile(mean, 0.05, na.rm = T),
      mean_med = median(mean, na.rm = T),
      mean_q95 = quantile(mean, 0.95, na.rm =T),
      max_q5 = quantile(max, 0.05, na.rm = T),
      max_med = median(max, na.rm = T),
      max_q95 = quantile(max, 0.95, na.rm = T),
      min_q5 = quantile(min, 0.05, na.rm = T),
      min_med = median(min, na.rm = T),
      min_q95 = quantile(min, 0.95, na.rm = T),
      sd_q5 = quantile(sd, 0.05, na.rm = T),
      sd_med = median(sd),
      sd_q95 = quantile(sd, 0.95, na.rm = T),
      skew_q5 = quantile(skew, 0.05, na.rm = T),
      skew_med = median(skew, na.rm = T),
      skew_q95 = quantile(skew, 0.95, na.rm = T)
      ) %>%
      # drop_na() %>%
    ungroup()
  
  if(Tag == "Temp"){
    obs <- obsDat %>%
      drop_na() %>%
      group_by(yday) %>%
      summarise(
        mean = mean(temp, na.rm = T),
        max = max(temp, na.rm = T),
        min = min(temp, na.rm = T),
        sd = sd(temp, na.rm = T),
        skew = skewness(temp, na.rm = T)
        ) %>%
      ungroup()
  } else if(Tag == "Precip"){
    obs <- obsDat %>%
      drop_na() %>%
      group_by(yday) %>%
      summarise(
        mean = mean(prcp, na.rm = T),
        max = max(prcp, na.rm = T),
        min = min(prcp, na.rm = T),
        sd = sd(prcp, na.rm = T),
        skew = skewness(prcp, na.rm = T)
        ) %>%
      ungroup()
    }

  colnames(obs)[-1] = paste0("obs_", colnames(obs)[-1])
  
  df.comb = left_join(simDq, obs, by = "yday")
  
  #calc performance metrics
  
  ensMed.rmse = rmse(sim = simDq$mean_med, obs = obs$obs_mean)
  # ensMed.nse = NSE(sim = simDq$mean_med, obs = obs$obs_mean)
  
  ensMed.cor = cor(x = simDq$mean_med, y = obs$obs_mean, method = "spearman")

  ensDat = as.matrix(pivot_wider(simD, names_from = variable, values_from = mean, id_cols = yday))
  
  if(Tag == "Precip") ensRef =  as.matrix(pivot_wider(obsDat, names_from = year, values_from = prcp, id_cols = yday))
  if(Tag == "Temp") ensRef =  as.matrix(pivot_wider(obsDat, names_from = year, values_from = temp, id_cols = yday))

  crps.Dat = mean(EnsCrps(ens = ensDat[,-1], obs = obs$obs_mean))
  crps.Ref = mean(EnsCrps(ens = ensRef[,-1], obs = obs$obs_mean))

  crpss = 1 - crps.Dat/crps.Ref

  perfMetrics = data.frame(ID = ID, Name = Name, EnsMedRMSE = ensMed.rmse, CRPSS = crpss, EnsMedCor = ensMed.cor, Tag = Tag)
  
  #plotting --------------------------------
  lgdLoc = c(0.8, 0.9)
  
  if(Tag == "Temp"){
    yLabel = "Daily Temperature "
    units = "(°F)"
  } else if(Tag == "Precip"){
    yLabel = "Daily Precipitation "
    units = "(inches)"
  }
  
  trnAlpha = 0.65
  
  #daily mean
  p1 = ggplot(df.comb) +
  geom_ribbon(aes(x = yday, ymin = mean_q5, ymax = mean_q95), alpha = 0.25) +
  geom_line(aes(x = yday, y = mean_med, color = "red"), size = 1, alpha = 0.8) +
  # geom_line(aes(x = yday, y = obs_mean), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
  geom_point(aes(x = yday, y = obs_mean), size = 0.6, alpha = trnAlpha, color = "blue") +
  scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
  theme_bw() +
  theme(axis.title = element_text(face = "bold"),
        text=element_text(size=14),
        panel.grid.major = element_line(),
        legend.title=element_blank(),
        legend.position = lgdLoc,
        legend.background = element_blank(),
        legend.box.background = element_blank(),
        legend.key = element_blank()) +
  xlab("Day of Year") + ylab(paste0("Mean ", yLabel, units))   
  
  #daily SD
  p2 = ggplot(df.comb) +
  geom_ribbon(aes(x = yday, ymin = sd_q5, ymax = sd_q95), alpha = 0.25) +
  geom_line(aes(x = yday, y = sd_med, color = "red"), size = 1, alpha = 0.8) +
  # geom_line(aes(x = yday, y = obs_sd), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
  geom_point(aes(x = yday, y = obs_sd), size = 0.6, alpha = trnAlpha, color = "blue") +
  scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
  theme_bw() +
  theme(axis.title = element_text(face = "bold"),
        text=element_text(size=14),
        panel.grid.major = element_line(),
        legend.title=element_blank(),
        legend.position = lgdLoc,
        legend.background = element_blank(),
        legend.box.background = element_blank(),
        legend.key = element_blank()) +
  xlab("Day of Year") + ylab(paste0("Std. Deviation of ", yLabel, units))   
  
  #daily skew
  p3 = ggplot(df.comb) +
  geom_ribbon(aes(x = yday, ymin = skew_q5, ymax = skew_q95), alpha = 0.25) +
  geom_line(aes(x = yday, y = skew_med, color = "red"), size = 1, alpha = 0.8) +
  # geom_line(aes(x = yday, y = obs_skew), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
  geom_point(aes(x = yday, y = obs_skew), size = 0.6, alpha = trnAlpha, color = "blue") +
  scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
  theme_bw() +
  theme(axis.title = element_text(face = "bold"),
        text=element_text(size=14),
        panel.grid.major = element_line(),
        legend.title=element_blank(),
        legend.position = lgdLoc,
        legend.background = element_blank(),
        legend.box.background = element_blank(),
        legend.key = element_blank()) +
  xlab("Day of Year") + ylab(paste0("Skew of ", yLabel, " (-)"))  
    
  
  #daily Max
  p4 = ggplot(df.comb) +
  geom_ribbon(aes(x = yday, ymin = max_q5, ymax = max_q95), alpha = 0.25) +
  geom_line(aes(x = yday, y = max_med, color = "red"), size = 1, alpha = 0.8) +
  # geom_line(aes(x = yday, y = obs_max), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
  geom_point(aes(x = yday, y = obs_max), size = 0.6, alpha = trnAlpha, color = "blue") +
  scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
  theme_bw() +
  theme(axis.title = element_text(face = "bold"),
        text=element_text(size=14),
        panel.grid.major = element_line(),
        legend.title=element_blank(),
        legend.position = lgdLoc,
        legend.background = element_blank(),
        legend.box.background = element_blank(),
        legend.key = element_blank()) +
  xlab("Day of Year") + ylab(paste0("Maximum ", yLabel, units))  
  
  #daily Min
  p5 = ggplot(df.comb) +
  geom_ribbon(aes(x = yday, ymin = min_q5, ymax = min_q95), alpha = 0.25) +
  geom_line(aes(x = yday, y = min_med, color = "red"), size = 1, alpha = 0.8) +
  # geom_line(aes(x = yday, y = obs_max), size = 0.3, alpha = trnAlpha, linetype = "solid", color = "blue") +
  geom_point(aes(x = yday, y = obs_min), size = 0.6, alpha = trnAlpha, color = "blue") +
  scale_colour_manual(values =c('blue'='blue','red'='red', 'grey' = 'grey'), labels = c('Observed','Simulation Median', '95% Confidence')) +
  theme_bw() +
  theme(axis.title = element_text(face = "bold"),
        text=element_text(size=14),
        panel.grid.major = element_line(),
        legend.title=element_blank(),
        legend.position = lgdLoc,
        legend.background = element_blank(),
        legend.box.background = element_blank(),
        legend.key = element_blank()) +
  xlab("Day of Year") + ylab(paste0("Minimum ", yLabel, units))  
  
  if(Tag == "Temp"){
    p.comb = ggarrange(p1, p2, p5, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "top")
  }else if(Tag == "Precip"){
    p.comb = ggarrange(p1, p2, p3, p4, nrow = 2, ncol = 2, common.legend = TRUE, legend = "top")
  }
  
  p.comb = annotate_figure(p.comb, top = text_grob(paste(ID, Name, sep = " - ")))
  
  print(p.comb)
  
  # p.out = paste0(outDirPlotsSta, "/dailyStats_", Tag, "_", Name, ".png")
  # ggsave(filename = p.out, plot = p.comb, device = "png")
  
  df.comb.o = df.comb %>%
    mutate(ID = ID, Name = Name, Tag = Tag)
  
  return(list(df.comb.o, perfMetrics))

}

plot monthly precipitation

df.daily.pcp = NULL
df.daily.pcp.perf = NULL

for(i in 1:n){
  
  simDat = datListProc[[i]][[1]]$sim.pcp
  obsDat = datListProc[[i]][[1]]$obs.pcp
  Tag = "Precip"
  ID = datListProc[[i]][[2]]
  Name = datListProc[[i]][[3]]
  
  df.i = dailyPlot(simDat, obsDat, Tag, ID, Name)
  
  df.daily.pcp = rbind(df.daily.pcp, df.i[[1]])
  df.daily.pcp.perf = rbind(df.daily.pcp.perf, df.i[[2]])

}
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.

#> `summarise()` has grouped output by 'variable'. You can override using the
#> `.groups` argument.
#> Warning: Removed 2 rows containing missing values (geom_point).