The packages used in this vignette are:
missing_values.R
rtables
requires that split variables to be factors.
When you try and split a variable that isn’t, a warning message will
appear. Here we purposefully convert the SEX variable to character to
demonstrate what happens when we try splitting the rows by this
variable. To fix this, df_explict_na
will convert this to a
factor resulting in the table being generated.
adsl <- tern_ex_adsl
adsl$SEX <- as.character(adsl$SEX)
vars <- c("AGE", "SEX", "RACE", "BMRKR1")
var_labels <- c(
"Age (yr)",
"Sex",
"Race",
"Continous Level Biomarker 1"
)
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ARM") %>%
add_overall_col("All Patients") %>%
analyze_vars(
vars = vars,
var_labels = var_labels
) %>%
build_table(adsl)
#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
#> converting character variable x to factor, better manually convert to factor to
#> avoid failures
#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
#> converting character variable x to factor, better manually convert to factor to
#> avoid failures
#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
#> converting character variable x to factor, better manually convert to factor to
#> avoid failures
#> Warning in as_factor_keep_attributes(x, verbose = verbose): automatically
#> converting character variable x to factor, better manually convert to factor to
#> avoid failures
result
#> A: Drug X B: Placebo C: Combination All Patients
#> (N=69) (N=73) (N=58) (N=200)
#> ———————————————————————————————————————————————————————————————————————————————————————————————————————
#> Age (yr)
#> n 69 73 58 200
#> Mean (SD) 34.1 (6.8) 35.8 (7.1) 36.1 (7.4) 35.3 (7.1)
#> Median 32.8 35.4 36.2 34.8
#> Min - Max 22.4 - 48.0 23.3 - 57.5 23.0 - 58.3 22.4 - 58.3
#> Sex
#> n 69 73 58 200
#> F 38 (55.1%) 40 (54.8%) 32 (55.2%) 110 (55%)
#> M 31 (44.9%) 33 (45.2%) 26 (44.8%) 90 (45%)
#> Race
#> n 69 73 58 200
#> ASIAN 38 (55.1%) 43 (58.9%) 29 (50%) 110 (55%)
#> BLACK OR AFRICAN AMERICAN 15 (21.7%) 13 (17.8%) 12 (20.7%) 40 (20%)
#> WHITE 11 (15.9%) 12 (16.4%) 11 (19%) 34 (17%)
#> AMERICAN INDIAN OR ALASKA NATIVE 4 (5.8%) 3 (4.1%) 6 (10.3%) 13 (6.5%)
#> MULTIPLE 1 (1.4%) 1 (1.4%) 0 2 (1%)
#> NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER 0 1 (1.4%) 0 1 (0.5%)
#> OTHER 0 0 0 0
#> UNKNOWN 0 0 0 0
#> Continous Level Biomarker 1
#> n 69 73 58 200
#> Mean (SD) 6.3 (3.6) 6.7 (3.5) 6.2 (3.3) 6.4 (3.5)
#> Median 5.4 6.3 5.4 5.6
#> Min - Max 0.4 - 17.8 1.0 - 18.5 2.4 - 19.1 0.4 - 19.1
missing_values.R
rtables
Here we purposefully convert all M
values to
NA
in the SEX
variable. After running
df_explicit_na
the NA
values are encoded as
<Missing>
but they are not included in the table. As
well, the missing values are not included in the n
count
and they are not included in the denominator value for calculating the
percent values.