Mixed models for repeated measures (MMRM) are a popular
choice for analyzing longitudinal continuous outcomes in randomized
clinical trials and beyond; see Cnaan, Laird and Slasor (1997)
<doi:10.1002/(SICI)1097-0258(19971030)16:20%3C2349::AID-SIM667%3E3.0.CO;2-E>
for a tutorial and Mallinckrodt, Lane, Schnell, Peng and Mancuso
(2008) <doi:10.1177/009286150804200402> for a review. This package
implements MMRM based on the marginal linear model without random
effects using Template Model Builder ('TMB') which enables fast and
robust model fitting. Users can specify a variety of covariance
matrices, weight observations, fit models with restricted or standard
maximum likelihood inference, perform hypothesis testing with
Satterthwaite or Kenward-Roger adjustment, and extract least square
means estimates by using 'emmeans'.
Version: |
0.3.12 |
Depends: |
R (≥ 4.0) |
Imports: |
checkmate (≥ 2.0), generics, lifecycle, Matrix, methods, nlme, parallel, Rcpp, Rdpack, stats, stringr, tibble, TMB (≥
1.9.1), utils |
LinkingTo: |
Rcpp, RcppEigen, testthat, TMB (≥ 1.9.1) |
Suggests: |
car (≥ 3.1.2), cli, clubSandwich, clusterGeneration, dplyr, emmeans (≥ 1.6), estimability, ggplot2, glmmTMB, hardhat, knitr, lme4, MASS, microbenchmark, mockery, parallelly (≥
1.32.0), parsnip (≥ 1.1.0), purrr, rmarkdown, sasr, scales, testthat (≥ 3.0.0), tidymodels, xml2 |
Published: |
2024-06-26 |
DOI: |
10.32614/CRAN.package.mmrm |
Author: |
Daniel Sabanes Bove [aut, cre],
Liming Li [aut],
Julia Dedic [aut],
Doug Kelkhoff [aut],
Kevin Kunzmann [aut],
Brian Matthew Lang [aut],
Christian Stock [aut],
Ya Wang [aut],
Craig Gower-Page [ctb],
Dan James [aut],
Jonathan Sidi [aut],
Daniel Leibovitz [aut],
Daniel D. Sjoberg
[aut],
Boehringer Ingelheim Ltd. [cph, fnd],
Gilead Sciences, Inc. [cph, fnd],
F. Hoffmann-La Roche AG [cph, fnd],
Merck Sharp & Dohme, Inc. [cph, fnd],
AstraZeneca plc [cph, fnd] |
Maintainer: |
Daniel Sabanes Bove <daniel.sabanes_bove at rconis.com> |
BugReports: |
https://github.com/openpharma/mmrm/issues |
License: |
Apache License 2.0 |
URL: |
https://openpharma.github.io/mmrm/ |
NeedsCompilation: |
yes |
Language: |
en-US |
Materials: |
NEWS |
In views: |
ClinicalTrials, MixedModels |
CRAN checks: |
mmrm results |