mixture: Mixture Models for Clustering and Classification

An implementation of 14 parsimonious mixture models for model-based clustering or model-based classification. Gaussian, Student's t, generalized hyperbolic, variance-gamma or skew-t mixtures are available. All approaches work with missing data. Celeux and Govaert (1995) <doi:10.1016/0031-3203(94)00125-6>, Browne and McNicholas (2014) <doi:10.1007/s11634-013-0139-1>, Browne and McNicholas (2015) <doi:10.1002/cjs.11246>.

Version: 2.0.4
Depends: R (≥ 3.5.0), lattice (≥ 0.20)
Imports: Rcpp (≥ 1.0.2)
LinkingTo: Rcpp, RcppArmadillo, BH, RcppGSL
Published: 2021-04-19
Author: Nik Pocuca [aut], Ryan P. Browne [aut], Paul D. McNicholas [aut, cre]
Maintainer: Paul D. McNicholas <mcnicholas at math.mcmaster.ca>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
SystemRequirements: GNU GSL
Materials: ChangeLog
In views: Cluster, MissingData
CRAN checks: mixture results


Reference manual: mixture.pdf
Package source: mixture_2.0.4.tar.gz
Windows binaries: r-devel: mixture_2.0.3.zip, r-devel-UCRT: mixture_2.0.4.zip, r-release: mixture_2.0.4.zip, r-oldrel: mixture_1.5.1.zip
macOS binaries: r-release: mixture_2.0.4.tgz, r-oldrel: mixture_2.0.4.tgz
Old sources: mixture archive

Reverse dependencies:

Reverse imports: Compositional, ContaminatedMixt, MixGHD, pmcgd


Please use the canonical form https://CRAN.R-project.org/package=mixture to link to this page.