Package ‘matchingMarkets’

May 18, 2015

Version 0.1-4
Depends R (>= 3.0.2)
Imports Rcpp (>= 0.11.2), lpSolve (>= 5.6.6), partitions
LinkingTo Rcpp, RcppArmadillo, RcppProgress (>= 0.2)
Title Structural Estimators and Algorithms for the Analysis of Stable Matchings
Author Thilo Klein
Maintainer Thilo Klein <thilo@klein.co.uk>
Description Implements structural estimators to correct for the sample selection bias from observed outcomes in matching markets. Also contains R code for matching algorithms such as the deferred-acceptance algorithm for college admissions, the top-trading-cycles algorithm for house allocation and a partitioning linear program for the roommates problem.
URL https://github.com/thiloklein/matchingMarkets,
 http://matchingmarkets.r-forge.r-project.org
License GPL (>= 2) | file LICENSE
Repository CRAN
Repository/R-Forge/Project matchingmarkets
Repository/R-Forge/Revision 30
Repository/R-Forge/DateTimeStamp 2015-05-15 19:20:17
Date/Publication 2015-05-18 18:06:32
NeedsCompilation yes

R topics documented:

 matchingMarkets-package .. 2
 baac00 .. 4
 daa ... 6
 khb ... 8
An R package for the analysis of stable matchings.

Description

The matchingMarkets package contains R and C++ code for the estimation of structural models that correct for the sample selection bias of observed outcomes in matching markets.

Matching is concerned with who transacts with whom, and how. For example, who works at which job, which students go to which school, who forms a workgroup with whom, and so on.

The empirical analysis of matching markets is naturally subject to sample selection problems. If agents match assortatively on characteristics unobserved to the analyst but correlated with both the exogenous variable and the outcome of interest, regression estimates will generally be biased.

The matchingMarkets package comprises

1. Bayes estimators. The estimators implemented in function stabit and stabit2 correct for the selection bias from endogenous matching.

 The current package version provides solutions for two commonly observed matching processes: (i) the group formation problem with fixed group sizes, (ii) the roommates problem with transferable utility, and (iii) the college admissions problem. These processes determine which matches are observed – and which are not – and this is a sample selection problem.

2. Post-estimation tools. Function mfx computes marginal effects from coefficients in binary outcome and selection equations and khb implements the Karlson-Holm-Breen test for confounding due to sample selection.

3. Design matrix generation. The estimators are based on independent variables for all feasible, i.e., observed and counterfactual, matches in the market. Generating the characteristics of all feasible matches from individual-level data is a combinatorial problem. The stabit function has an argument method="model.frame" that returns a design matrix based on pre-specified transformations to generate counterfactual matches.

4. Algorithms. The package also contains several matching algorithms such as the deferred acceptance algorithm (daa) for stable marriages and college admissions, the top-trading-cycles algorithm (ttc) for house allocation and a partitioning linear program (plp) for the stable roommates problem. These can be used to obtain stable matchings from simulated or real preference data.
5. Data. In addition to the \texttt{baac00} dataset from borrowing groups in Thailand’s largest agricultural lending program, the package provides functions to simulate one’s own data from matching markets. \texttt{stabsim} generates individual-level data and the \texttt{stabit} function has an argument \texttt{simulation} which generates group-level data and determines which groups are observed in equilibrium based on an underlying linear stochastic model.

Frequently Asked Questions

- Why can I not use the classic Heckman correction?
 Estimators such as the Heckman (1979) correction (in package \texttt{sampleSelection}) or double selection models are inappropriate for this class of selection problems. To see this, note that a simple first stage discrete choice model assumes that an observed match reveals match partners’ preferences over each other. In a matching market, however, agents can only choose from the set of partners who would be willing to form a match with them and we do not observe the players’ relevant choice sets.

- Do I need an instrumental variable to estimate the model?
 Short answer: No. Long answer: The characteristics of other agents in the market serve as the source of exogenous variation necessary to identify the model. The identifying exclusion restriction is that characteristics of all agents in the market affect the matching, i.e., who matches with whom, but it is only the characteristics of the match partners that affect the outcome of a particular match once it is formed. No additional instruments are required for identification (Sorensen, 2007).

- What are the main assumptions underlying the estimator?
 The approach has certain limitations rooted in its restrictive economic assumptions.
 1. The matching models are complete information models. That is, agents are assumed to have a complete knowledge of the qualities of other market participants.
 2. The models are static equilibrium models. This implies that (i) the observed matching must be an equilibrium, i.e., no two agents would prefer to leave their current partners in order to form a new match (definition of pairwise stability), and (ii) the equilibrium must be unique for the likelihood function of the model to be well defined (Bresnahan and Reiss, 1991).
 3. Uniqueness results can be obtained in two ways. First, as is common in the industrial organization literature, by imposing suitable preference restrictions. A suitable restriction on agents’ preferences that guarantees a unique equilibrium is alignment (Pycia, 2012). In a group formation model, (pairwise) preference alignment states that any two agents who belong to the same groups must prefer the same group over the other. Second, by choosing a market assignment based on matching algorithms that produce a unique stable matching, such as the well-studied Gale and Shapley (1962) deferred acceptance algorithm.
 4. Finally, the models assume bivariate normality of the errors in selection and outcome equation. If that assumption fails, the estimator is generally inconsistent and can provide misleading inference in small samples.

How to cite this package

Whenever using this package, please cite as

Work in progress

1. Extension of the estimator in `stabit` to allow for \(n \geq 2 \) groups per market for the group formation problem. Currently, it supports \(n \geq 2 \) groups per market for the roommates problem only.

2. Extension of the estimator in the `stabit` function to allow for two-sided matching data from the college admissions problem. Currently, only one-sided matching data from the group formation and stable roommates problem is supported.

Author(s)

Thilo Klein

References

See Also

`sampleSelection`

The `baac00` data frame contains data of 292 borrowers from Thailand’s largest agricultural lending program. These data are collected as part of the Townsend Thai Project Bank for Agriculture and Agricultural Cooperatives (BAAC) Annual Resurvey (Townsend, 2000). The 292 borrowers are nested within 68 groups and 39 markets. This nestedness makes the dataset particularly relevant for matching applications. A more complete discussion of the data is found in Ahlin (2009), Section 3, and Klein (2015a).

Usage

data(baac00)
Format

This data frame contains the following columns:

- **g.id**: group identifier.
- **m.id**: market identifier.
- **R**: repayment outcome: BAAC never raised interest rate as a penalty for late repayment.
- **pi**: success probability: measure of group members’ project success probability.
- **wst**: worst year: indicator of economically worst year. 1: last year; 2: year before last year; 101-168: neither.
- **occ1**: occupation: fraction of total household revenue accounted for by each one of 10 agriculture-related revenue categories. Category 1: Rice Farming.
- **occ2**: Category 2: Corn Farming.
- **occ3**: Category 3: Vegetable Farming.
- **occ4**: Category 4: Orchard Farming.
- **occ5**: Category 5: Other Crop.
- **occ6**: Category 6: Raising Shrimp.
- **occ7**: Category 7: Raising Fish.
- **occ8**: Category 8: Raising Chickens or Ducks.
- **occ9**: Category 9: Raising Pigs, Cows or Buffalo.
- **occ10**: Category 10: Raising other Livestock.
- **loan_size**: loan size: average loan size borrowed by the group.
- **loan_size2**: loan size squared.
- **ln_group_age**: log group age: log of number of years group has existed.

Source

References

Deferred Acceptance Algorithm for two-sided matching markets

Description

Finds the student-optimal matching in the college admissions problem or the men-optimal matching in the stable marriage problem. Uses the Gale-Shapley (1962) Deferred Acceptance Algorithm with student/male offer based on given or randomly generated preferences.

Usage

da(nStudents = ncol(s.prefs), nColleges = ncol(c.prefs), nSlots = rep(1, nColleges), s.prefs = NULL, c.prefs = NULL)

Arguments

- **nStudents**: integer indicating the number of students (in the college admissions problem) or men (in the stable marriage problem) in the market. Defaults to ncol(s.prefs).
- **nColleges**: integer indicating the number of colleges (in the college admissions problem) or women (in the stable marriage problem) in the market. Defaults to ncol(c.prefs).
- **nSlots**: vector of length nColleges indicating the number of places (i.e. quota) of each college. Defaults to rep(1, nColleges) for the marriage problem.
- **s.prefs**: matrix of dimension nColleges x nStudents with the jth column containing student j’s ranking over colleges in decreasing order of preference (i.e. most preferred first).
- **c.prefs**: matrix of dimension nStudents x nColleges with the ith column containing college i’s ranking over students in decreasing order of preference (i.e. most preferred first).

Value

da returns a list with the following elements.

- **s.prefs**: student-side preference matrix.
- **c.prefs**: college-side preference matrix.
- **iterations**: number of iterations required to find the stable matching.
- **matches**: identifier of students/men assigned to colleges/women.
- **match.mat**: matching matrix of dimension nStudents x nColleges.
- **singles**: identifier of single (or unmatched) students/men.
Minimum required arguments

daar requires the following combination of arguments, subject to the matching problem.

nStudents, nColleges Marriage problem with random preferences.
s.prefs, c.prefs Marriage problem with given preferences.
nStudents, nSlots College admissions problem with random preferences.
s.prefs, c.prefs, nSlots College admissions problem with given preferences.

Author(s)

Thilo Klein

References

Examples

###############################
Marriage problem
###############################

3 men, 2 women, random preferences:##
daanStudents=3, nColleges=2)

3 men, 2 women, given preferences:##
s.prefs <- matrix(c(1,2, 1,2, 1,2, 2,3)
c.prefs <- matrix(c(1,2,3, 1,2,3, 3,2)
daas.prefs=s.prefs, c.prefs=c.prefs)

###############################
College admission problem
###############################

7 students, 2 colleges with 3 slots each, random preferences:##
daanStudents=7, nSlots=c(3,3))

7 students, 2 colleges with 3 slots each, given preferences:##
s.prefs <- matrix(c(1,2, 1,2, 1,2, 1,2, 1,2, 1,2, 2,7)
c.prefs <- matrix(c(1,2,3,4,5,6,7, 1,2,3,4,5,6,7, 7,2)
daas.prefs=s.prefs, c.prefs=c.prefs, nSlots=c(3,3))
kjh
Karlson-Holm-Breen method for comparing probit coefficients

Description
Significance test for confounding; that is, the difference between regression coefficients from same-sample nested logit and probit models. The test procedure follows Karlson et al (2012), Section 3.4.

Usage

```r
kjh(X, y, z)
```

Arguments

- `X`: data frame comprising independent variables including confounding variable.
- `y`: vector of dependent variable.
- `z`: character string giving the name of the confounding variable in `X`.

Author(s)
Thilo Klein

References

Examples

```r
## 1. load results from Klein (2015a)
data(klein15a)
M <- klein15a$model.list

## 2. extract variables
X <- do.call(rbind.data.frame, M$X)
etta <- c(klein15a$coefs$eta, rep(0, length(M$X)-length(M$W)))
X <- cbind(X, etta)
y <- unlist(M$R)

## 3. apply KHB method
kjh(X=X, y=y, z="eta")
```
klein15a

MCMC results in Klein (2015a).

Description

MCMC results in Klein (2015a).

Usage

`data(klein15a)`

Format

This list contains the following elements:

- `model.list`
- `coefs`

References

klein15b

Results of Monte Carlo Simulations in Klein (2015b).

Description

Results of Monte Carlo Simulations in Klein (2015b) for 40 two-group markets.

Usage

`data(klein15b)`

Format

This list contains the following elements:

- `exp.5.5.ols` Benchmark study, OLS: coefficient estimates for 40 markets with groups of 5. Data for all 5 group members is observed.
- `exp.5.5.ntu` Benchmark study, structural model.
- `exp.6.5.ols` Experiment 1, OLS: coefficient estimates for 40 markets with groups of 6. Only Data for 5 group members is observed.
- `exp.6.5.ntu` Experiment 1, structural model.
- `exp.6.6.ols` Experiment 2, OLS: coefficient estimates for 40 markets with groups of 6. Data for all 6 group members is observed but only a random sample of 250 of the 922 counterfactual groups is used in the analysis.
- `exp.6.6.ntu` Experiment 2, structural model.
References

Examples

```r
## Not run:
##############################
## Modes of posterior distributions ##
##############################

## load data
data(klein15b)

## define function to obtain the mode
mode <- function(x){
  d <- density(x,bw="SJ")
  d$x[which.max(d$y)]
}

## Benchmark study
apply(klein15b$exp.5.5.ntu, 2, mode)
apply(klein15b$exp.5.5.ols, 2, mode)

## Experiment 1
apply(klein15b$exp.6.5.ntu, 2, mode)
apply(klein15b$exp.6.5.ols, 2, mode)

## Experiment 2
apply(klein15b$exp.6.5.ntu, 2, mode)
apply(klein15b$exp.6.5.ols, 2, mode)

##############################
## Plot of posterior distributions ##
##############################

## load data
data(klein15b)

par(mfrow=c(3,3))
tpe <- c(rep("Benchmark",2), rep("Experiment 1",2), rep("Experiment 2",2))

for(i in seq(1,length(klein15b)-1,2)){
  ntu <- klein15b[[i]]
  ols <- klein15b[[i+1]]

  ntu <- ntu[,colnames(ntu)]
  ols <- ols[,colnames(ols) == "beta.wst.ieq"]
  ```
Description

MC Experiments

Usage

```r
mce(seed, niter, N, n, m, type, method)
```

Arguments

- **seed**: seed value for Monte Carlo Experiment
- **niter**: number of draws in estimation
- **N**: group size (population)
- **n**: group size (sample)
- **m**: number of markets
- **type**: type of the MC Experiment. Either `group.members` for randomly sampled group members or `counterfactual.groups` for randomly sampled number of counterfactual (or feasible) groups in selection equation (capped at limit `max.combs=250`)
- **method**: either `group.members` or `counterfactual.groups`

Author(s)

Thilo Klein
Examples

```r
# Not run:
# 1. Set parameters
mciter <- 2 #500
niter <- 10 #400000
nodes <- 4

# 2. Setup parallel backend to use 4 processors
library(foreach); library(doSNOW)
cl <- makeCluster(4); registerDoSNOW(cl)

# 3. Define foreach loop function
mce.add <- function(mciter, niter, N, n, m, type, method)(
  h <- foreach(i=1:mciter) %dopar% {
    library(matchingMarkets)
    mce(seed=i,niter, N, n, m, type, method)
  }
do.call(rbind, h)

# 4. Run simulations:

# 4-a. Benchmark study
exp.5.5.ols <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40,
                      type="group.members", method= "outcome")
exp.5.5.ntu <- mce.add(mciter=mciter, niter=niter, N=5, n=5, m=40,
                      type="group.members", method= "NTU")

# 4-b. Experiment 1: randomly sampled group members
exp.6.5.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40,
                      type="group.members", method= "outcome")
exp.6.5.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=5, m=40,
                      type="group.members", method= "NTU")

# 4-c. Experiment 2: randomly sampled counterfactual groups
exp.6.6.ols <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40,
                      type="counterfactual.groups", method= "outcome")
exp.6.6.ntu <- mce.add(mciter=mciter, niter=niter, N=6, n=6, m=40,
                      type="counterfactual.groups", method= "NTU")

# 5. Stop parallel backend
stopCluster(cl)
```

mfx

Marginal effects for probit and matching models

Description

Marginal effects from regression coefficients for probit and matching models.
Usage

\texttt{mfx(m, toLatex = FALSE)}

Arguments

\texttt{m} \hspace{1cm} an object returned from function \texttt{stabit}.
\texttt{tolatex} \hspace{1cm} logical: if \texttt{TRUE} the result tables are printed in Latex format. The default setting is \texttt{FALSE}.

Author(s)

Thilo Klein

Examples

\texttt{## 1. load results from Klein (2015a)}
\texttt{data(klein15a)}

\texttt{## 2. apply mfx function and print results}
\texttt{mfx(m=klein15a)}

\texttt{plp} \hspace{1cm} \textit{Partitioning Linear Programme for the stable roommates problem}

Description

Usage

\texttt{plp(V = NULL, N = NULL)}

Arguments

\texttt{V} \hspace{1cm} valuation matrix of dimension $N \times N$ that gives row-players valuation over column players (or vice versa).
\texttt{N} \hspace{1cm} integer (divisible by 2) that gives the number of players in the market.

Value

\texttt{plp} returns a list with the following items.

Valuation.matrix
\hspace{1cm} input values of V.

Assignment.matrix
\hspace{1cm} upper triangular matrix of dimension $N \times N$ with entries of 1 for equilibrium pairs and 0 otherwise.
Equilibrium groups

matrix that gives the N/2 equilibrium pairs and equilibrium partners’ mutual valuations.

Author(s)

Thilo Klein

References

Examples

```r
## Roommate problem with 10 players, transferable utility and random preferences:
plp(N=10)

## Roommate problem with 10 players, transferable utility and given preferences:
V <- matrix(rep(1:10, 10), 10, 10)
plp(V=V)
```

stabit

Structural Matching Model to correct for sample selection bias

Description

The function provides a Gibbs sampler for a structural matching model that corrects for sample selection bias when the selection process is a one-sided matching game; that is, group/coalition formation.

The input is individual-level data of all group members from one-sided matching marktes; that is, from group/coalition formation games.

In a first step, the function generates a model matrix with characteristics of **all feasible** groups of the same size as the observed groups in the market.

For example, in the stable roommates problem with \(n = 4 \) students \{1, 2, 3, 4\} sorting into groups of 2, we have \(\binom{4}{2} = 6 \) feasible groups: (1,2)(3,4) (1,3)(2,4) (1,4)(2,3).

In the group formation problem with \(n = 6 \) students \{1, 2, 3, 4, 5, 6\} sorting into groups of 3, we have \(\binom{6}{3} = 20 \) feasible groups. For the same students sorting into groups of sizes 2 and 4, we have \(\binom{6}{2} + \binom{6}{4} = 30 \) feasible groups.

The structural model consists of a selection and an outcome equation. The Selection Equation determines which matches are observed \((D = 1) \) and which are not \((D = 0) \).

\[
D = \mathbf{1}[V \in \Gamma] \\
V = W\alpha + \eta
\]

Here, \(V \) is a vector of latent valuations of **all feasible** matches, ie observed and unobserved, and \(\mathbf{1}[:] \) is the Iverson bracket. A match is observed if its match valuation is in the set of valuations \(\Gamma \)
that satisfy the equilibrium condition (see Klein, 2015a). This condition differs for matching games with transferable and non-transferable utility and can be specified using the method argument. The match valuation V is a linear function of W, a matrix of characteristics for all feasible groups, and η, a vector of random errors. α is a parameter vector to be estimated.

The **Outcome Equation** determines the outcome for observed matches. The dependent variable can either be continuous or binary, dependent on the value of the `binary` argument. In the binary case, the dependent variable R is determined by a threshold rule for the latent variable Y.

$$
R = \mathbf{1}[Y > c] \\
Y = X\beta + \epsilon
$$

Here, Y is a linear function of X, a matrix of characteristics for observed matches, and ϵ, a vector of random errors. β is a parameter vector to be estimated.

The structural model imposes a linear relationship between the error terms of both equations as $\epsilon = \delta \eta + \xi$, where ξ is a vector of random errors and δ is the covariance parameter to be estimated. If δ were zero, the marginal distributions of ϵ and η would be independent and the selection problem would vanish. That is, the observed outcomes would be a random sample from the population of interest.

Usage

```r
stabit(x, m.id = "m.id", g.id = "g.id", R = "R", selection = NULL, 
outcome = NULL, roommates = FALSE, simulation = "none", seed = 123, 
max.combs = Inf, method = "NTU", binary = FALSE, offsetOut = 0, 
offsetSel = 0, marketFE = FALSE, censored = 0, gprior = FALSE, 
dropOnes = FALSE, interOut = 0, interSel = 0, standardize = 0, 
niter = 10)
```

Arguments

- **x** data frame with individual-level characteristics of all group members including market- and group-identifiers.
- **m.id** character string giving the name of the market identifier variable. Defaults to "m.id".
- **g.id** character string giving the name of the group identifier variable. Defaults to "g.id".
- **R** dependent variable in outcome equation. Defaults to "R".
- **selection** list containing variables and pertaining operators in the selection equation. The format is `operation = "variable"`. See the Details and Examples sections.
- **outcome** list containing variables and pertaining operators in the outcome equation. The format is `operation = "variable"`. See the Details and Examples sections.
- **roommates** logical: if `TRUE` data is assumed to come from a roommate game. This means that groups are of size two and the model matrix is prepared for individual-level analysis (peer-effects estimation). If `FALSE` (which is the default) data is assumed to come from a group/coalition formation game and the model matrix is prepared for group-level analysis.
stabit

should the values of dependent variables in selection and outcome equations be simulated? Options are "none" for no simulation, "NTU" for non-transferable utility matching, "TU" for transferable utility or "random" for random matching of individuals to groups. Simulation settings are (i) all model coefficients set to alpha=beta=1; (ii) covariance between error terms delta=0.5; (iii) error terms eta and xi are draws from a standard normal distribution.

seed integer setting the state for random number generation if simulation=TRUE.

max.combs integer (divisible by two) giving the maximum number of feasible groups to be used for generating group-level characteristics.

method estimation method to be used. Either "NTU" or "TU" for selection correction using non-transferable or transferable utility matching as selection rule; "outcome" for estimation of the outcome equation only; or "model.frame" for no estimation.

binary logical: if TRUE outcome variable is taken to be binary; if FALSE outcome variable is taken to be continuous.

offsetOut vector of integers indicating the indices of columns in X for which coefficients should be forced to 1. Use 0 for none.

offsetSel vector of integers indicating the indices of columns in W for which coefficients should be forced to 1. Use 0 for none.

marketFE logical: if TRUE market-level fixed effects are used in outcome equation; if FALSE no market fixed effects are used.

censored draws of the delta parameter that estimates the covariation between the error terms in selection and outcome equation are 0:not censored, 1:censored from below, 2:censored from above.

gPrior logical: if TRUE the g-prior (Zellner, 1986) is used for the variance-covariance matrix.

dropOnes logical: if TRUE one-group-markets are excluded from estimation.

interOut two-column matrix indicating the indices of columns in X that should be interacted in estimation. Use 0 for none.

interSel two-column matrix indicating the indices of columns in W that should be interacted in estimation. Use 0 for none.

standardize numeric: if standardize>0 the independent variables will be standardized by dividing by standardize times their standard deviation. Defaults to no standardization standardize=0.

niter number of iterations to use for the Gibbs sampler.

Details

Operators for variable transformations in selection and outcome arguments.

add sum over all group members and divide by group size.

int sum over all possible two-way interactions x * y of group members and divide by the number of those, given by choose(n,2).

ieq sum over all possible two-way equality assertions 1[x = y] and divide by the number of those.
ive sum over all possible two-way interactions of vectors of variables of group members and divide by number of those.

inv ...

dst sum over all possible two-way distances between players and divide by number of those, where distance is defined as $e^{-|x-y|}$.

sel for roommates=TRUE only: variable for individual (for peer effects estimation).

oth for roommates=TRUE only: variable for other in the group (for peer effects estimation).

Value

stabit returns a list with the following items.

model.list
model.frame
draws
coefs

Values of model.list

D vector that indicates – for all feasible groups in the market – whether a group is observed in the data D=1 or not D=0.

R list of group-level outcome vectors for equilibrium groups.

W list with data.frame $W[[t]][G,]$ containing characteristics of group G in market t (all feasible groups).

X list with data.frame $X[[t]][G,]$ containing characteristics of group G in market t (equilibrium groups only).

V vector of group valuations for all feasible groups in the market.

P vector that gives for each group the index of the group comprised of residual individuals in the market (for 2-group markets).

epsilon if simulation!="none", the errors in the outcome equation, given by delta*eta + xi.

eta if simulation!="none", the standard normally distributed errors in the selection equation.

xi if simulation!="none", the standard normally distributed component of the errors in the selection equation that is independent of eta.

combs partitions matrix that gives all feasible partitions of the market into groups of the observed sizes.

E matrix that gives the indices of equilibrium group members for each group in the market. Only differs from the first two rows in combs if simulation!="none".

sigmasquareximean variance estimate of the error term xi in the outcome equation.

Values of model.frame

SEL data frame comprising variables in selection equation and number of observations equal to the number of feasible groups.

OUT data frame comprising variables in outcome equation and number of observations equal to the number of equilibrium groups.
Values of draws

alphadraws matrix of dimension ncol(W) x niter comprising all parameter draws for the selection equation.

betadraws matrix of dimension ncol(X) x niter comprising all parameter draws for the outcome equation.

deltadraws vector of length niter comprising all draws for the delta parameter.
sigmasquarexidraws.

Values of coefs

eta vector containing the mean of all eta draws for each observed group.
alpha matrix comprising the coefficient estimates of alpha and their standard errors.
beta matrix comprising the coefficient estimates of beta and their standard errors.
delta coefficient estimate of delta and its standard error.
sigmasquarexi variance estimate of the error term xi in the outcome equation and its standard error.

Author(s)

Thilo Klein

References

Examples

```
### MODEL FRAMES (method="model.frame") ###

### --- ROOMMATES GAME ---
### 1. Simulate one-sided matching data for 3 markets (m=3) with 3 groups
### per market (gpm=3) and 2 individuals per group (ind=2)
idata <- stabsim(m=3, ind=2, gpm=3)
### 2. Obtain the model frame
s1 <- stabit(x=idata, selection = list(add="pi", ieq="wst"),
          outcome = list(add="pi", ieq="wst"),
          method="model.frame", simulation="TU", roommates=TRUE)

### --- GROUP/COALITION FORMATION (I) ---
### 1. Simulate one-sided matching data for 3 markets (m=3) with 2 groups
### per market (gpm=2) and 2 to 4 individuals per group (ind=2:4)
idata <- stabsim(m=3, ind=2:4, gpm=2)
### 2. Obtain the model frame
```
stabsim

```
s2 <- stabit(x=idata, selection = list(add="pi", ieq="wst"),
               outcome = list(add="pi", ieq="wst"),
               method="model.frame", simulation="NTU", roommates=FALSE)

## --- GROUP/COALITION FORMATION (II) ---
## Not run:
## 1. Load baac00 data from the Townsend Thai project
data(baac00)
## 2. Obtain the model frame
s3 <- stabit(x=baac00, selection = list(add="pi", int="pi", ieq="wst", ieq="occ"),
               outcome = list(add="pi", int="pi", ieq="wst", ieq="occ"),
               add=c("loan_size","loan_size2","lngroup_agei"),
               method="model.frame", simulation="none")

## End(Not run)

# Estimation (method="NTU")
# Not run:
## --- SIMULATED EXAMPLE ---
## 1. Simulate one-sided matching data for 3 markets (m=3) with 2 groups
## per market (gpm=2) and 2 to 4 individuals per group (ind=2:4)
idata <- stabsim(m=3, ind=2:4, gpm=2)
## 2. Run Gibbs sampler
fit1 <- stabit(x=idata, selection = list(add="pi", ieq="wst"),
               outcome = list(add="pi", ieq="wst"),
               method="NTU", simulation="NTU", binary=FALSE, niter=2000)
## 3. Get results
names(fit1)

## --- REPLICATION, Klein (2015a) ---
## 1. Load data
data(baac00); head(baac00)
## 2. Standardise variables
baac00$pi <- baac00$pi + (1-baac00$pi)*0.5
baac00$loan_size <- baac00$loan_size/sd(baac00$loan_size)
baac00$loan_size2 <- baac00$loan_size^2
baac00$lngroup_agei <- baac00$lngroup_agei/sd(baac00$lngroup_agei)
## 3. Run Gibbs sampler
klein15a <- stabit(x=baac00, selection = list(inv="pi", ieq="wst"),
                    outcome = list(add="pi", ieq="wst"),
                    add=c("loan_size","loan_size2","lngroup_agei"), offsetOut=1,
                    method="NTU", binary=TRUE, gprior=TRUE, marketFE=TRUE, niter=800000)
## 4. Get results
mfx(klein15a)

## End(Not run)
```
Description

Simulate individual-level data for one-sided matching markets.

Usage

```r
stabsim(m, ind, seed = 123, singles = NULL, gpm = 2)
```

Arguments

- `m`: integer indicating the number of markets to be simulated.
- `ind`: integer (or vector) indicating the number of individuals per group.
- `seed`: integer setting the state for random number generation. Defaults to `set.seed(123)`.
- `singles`: integer giving the number of one-group markets.
- `gpm`: integer giving the number of groups per market.

Value

`stabsim` returns a data frame with the randomly generated variables mimicking those in dataset `baacPP`.

- `m.id`: categorical: market identifier.
- `g.id`: categorical: group identifier.
- `pi`: continuous: uniformly distributed project success probability in [0,1].
- `wst`: binary: indicator taking the value 1 if last year was worse than the year before; 0 otherwise.
- `occ1`: continuous: percentage of revenue from income group 1.
- `occ2`: continuous: percentage of revenue from income group 2.
- `occ3`: continuous: percentage of revenue from income group 3.
- `R`: NA: group outcome is not simulated. It can be obtained using the simulation argument in function `stabit`.

Author(s)

Thilo Klein

Examples

```r
## Coalitions [gpm := 2 !]
## Simulate one-sided matching data for 4 markets (m=4) with 2 groups
## per market (gpm=2) and 2 to 4 individuals per group (ind=2:4)
idata <- stabsim(m=4, ind=2:4, seed=124, singles=2, gpm=2)

## Roommates [ind := 2 !]
## Simulate one-sided matching data for 3 markets (m=3) with 3 groups
## per market (gpm=3) and 2 individuals per group (ind=2)
idata <- stabsim(m=3, ind=2, seed=124, gpm=3)
```
Description

Usage

```
ttc(P = NULL, X = NULL)
```

Arguments

- `P` list of individuals’ preference rankings over objects.
- `X` 2-column-matrix of objects (obj) and their owners (ind).

Value

`ttc` returns a 2-column matrix of the stable matching solution for the housing market problem based on the Top-Trading-Cycles algorithm.

Author(s)

Thilo Klein

References

Examples

```
## generate list of individuals' preference rankings over objects
P <- list()
P[[1]] <- c(2,5,1,4,3)  # individual 1
P[[2]] <- c(1,5,4,3,2)  # individual 2
P[[3]] <- c(2,1,4,3,5)  # individual 3
P[[4]] <- c(2,4,3,1,5)  # individual 4
P[[5]] <- c(4,3,1,2,5); P # individual 5

## generate 2-column-matrix of objects ('obj') and their owners ('ind')
X <- data.frame(ind=1:5, obj=1:5); X

## find assignment based on TTC algorithm
ttc(P=P, X=X)
```
Index

*Topic **algorithms**
 daa, 6
 plp, 13
 ttc, 21

*Topic **datasets**
 baac00, 4
 klein15a, 9
 klein15b, 9

*Topic **generate**
 stabsim, 20

*Topic **package**
 matchingMarkets-package, 2

*Topic **regression**
 stabit, 14

*Topic **summary**
 khb, 8
 mfx, 12

baac00, 3, 4, 20

da, 2, 6

khb, 2, 8
klein15a, 9
klein15b, 9

matchingMarkets
 (matchingMarkets-package), 2
matchingMarkets-package, 2
mce, 11
mfx, 2, 12

plp, 2, 13

stabit, 2–4, 14
stabitCpp (stabit), 14
stabsim, 3, 19

ttc, 2, 21