Package ‘HiDimMaxStable’

February 19, 2015

Version 0.1.1
Date 2015-01-14
Encoding UTF-8
Title Inference on High Dimensional Max-Stable Distributions
Depends R (>= 2.2.0), methods, copula
Imports mnormt, partitions, maxLik, mnormpow, VGAM
Suggests rgl, snowfall, MASS, SpatialExtremes
Description Inference of high dimensional max-stable
distributions, from the paper "Likelihood based inference for
high-dimensional extreme value distributions", by A. Bienvenüe
License GPL (>= 2)
URL http://arxiv.org/abs/1403.0065
Author Alexis Bienvenüe [aut, cre],
Christian Robert [aut]
Maintainer Alexis Bienvenüe <alexis.bienvenue@univ-lyon1.fr>
NeedsCompilation no
Repository CRAN
Date/Publication 2015-01-14 12:30:22

R topics documented:

build.clusters.spatial .. 2
dens.grid ... 3
excess.censor ... 5
excess.l ... 6
margin ... 7
margin-class .. 8
maxblocks ... 8
maxgrid ... 9
maxlik ... 10
build.clusters.spatial

Builds clusters with a given maximum size using a k-means clustering.

Description

Builds clusters from the spatial locations of sites using a k-means clustering, to get a partition (of the sites) whose block sizes are at most 5 so that the partition-composite likelihood for observations of a max-stable process at the sites can be computed in a moderate time.

Usage

build.clusters.spatial(xy,max.size=5,plot=FALSE)

Arguments

xy a matrix giving the coordinates of each location. Each row corresponds to one location.
max.size an integer giving the maximum size of the blocks of the returned partition.
plot Whether you also want a plot or not.

Value

the return value is a vector of integers giving the index of the set for each location.

Examples

n.site<-10
xy<-matrix(runif(2 * n.site, 0, 0.5), ncol = 2)

param<-c(0.5,1.5)
n.obs<-20
library(SpatialExtremes)
data<-t(rmaxstab(n.obs, xy, "whitmat", param))
maxstable.l.clusters
mubz.copula
mubz.lnormal
mubz.normal
plot3d.densgrid
rCMS
rSchlatherExcess
select.mean
simultoccur.l
spatial
spatial-class

Index

build.clusters.spatial

Builds clusters with a given maximum size using a k-means clustering.
\textit{dens.grid} \hspace{1cm} Computes the likelihood function on a grid of parameters

\textbf{Description}

The \textit{dens.grid} function family is used to compute the likelihood at several points on a grid. \texttt{J} must be one of the following: "maxstable", "excess" or "simultoccur".

\textbf{Usage}

\begin{verbatim}
 dens.grid.maxstable(...)
 dens.grid.excess(...)
 dens.grid.simultoccur(...)
\end{verbatim}

\textbf{Arguments}

\begin{itemize}
 \item \ldots\hspace{1cm} see details.
\end{itemize}

\textbf{Details}

\texttt{dens.grid} specific arguments are the following:

\begin{itemize}
 \item \texttt{data} a matrix representing the data.
 \item \texttt{params} a vector giving the arguments to be passed to the likelihood function; \texttt{NA} indicates that the coordinate has to be replaced by multiple values on a grid (there must be two \texttt{NA}’s in the vector).
 \item \texttt{seqx}, \texttt{seqy} vectors giving the values to be used to compute the likelihood for the two coordinates that are set to \texttt{NA} in the \texttt{params} vector.
 \item \texttt{ln} logical. If \texttt{TRUE} log-density is computed.
 \item \texttt{parallel} logical. If \texttt{TRUE} a parallel computation of the log-likelihood function is performed, using the \texttt{snowfall} package (\texttt{sfInit} must be called before).
\end{itemize}

Other arguments are passed to the likelihood function.

\textbf{Value}

returns a list \texttt{l} including parameters used in the call (\texttt{l$params}, \texttt{l$seqx}, \texttt{l$seqy}), and a matrix for the computed values of the log-likelihood: \texttt{l$dens}.
See Also

maxstable.1.clusters, excess.1.simultoccur.1 for the likelihood functions; plot3d.densgrid for a 3D visualisation of the computed values of the log-likelihood.

Examples

Log density of the Max-stable distribution of the Schlather process
with the Whittle Matern correlation function
Use larger values for n.site and n.obs for better results
n.site<3
n.obs<2
xy<matrix(runif(2*n.site,0,2),ncol=2)
param<-c(0.5,1.5)
library(SpatialExtremes)
data<-t(rmaxstab(n.obs, xy, "whitmat",
 nugget = 0, range = param[1], smooth = param[2]))
cl<build.clusters.spatial(xy)
d<dens.grid.maxstable(data,c(NA,NA),seq(0.1,1,length=5),seq(1,2,length=5),
 category="normal",
 spatial=list(sites=xy,family=spatialWhittleMatern),
 parallel=FALSE,
 clusters=cl)
plot3d.densgrid(d)

Log density of the Max-stable distribution of the Brown Resnick process
Use larger values for n.site and n.obs for better results
n.site<4
n.obs<3
xy<-matrix(runif(2*n.site,0,2),ncol=2)
param<-c(0.5,1)
library(SpatialExtremes)
data<-t(rmaxstab(n.obs, xy, cov.mod = "brown", range = param[1], smooth = param[2]))
cl<build.clusters.spatial(xy)
library(snowfall)
sfInit(parallel=TRUE,cpus=4)
sfLibrary(HiDimMaxStable)
d<dens.grid.maxstable(data,c(NA,NA),seq(0.1,1,length=5),seq(0.1,1.8,length=5),
 category="lnormal",
 spatial=list(sites=xy,family=spatialPower),
 parallel=TRUE,
 clusters=cl)
sfStop()
plot3d.densgrid(d)

Log density of the distribution of the vector of excesses for an
homogeneous clustered max-stable distribution
Use larger values for n and dimensions for better results
raw.data<rcMS(copulas=c(copClayton,copGumbel),
 margins=c(marginlnorm,marginFrechet),
 classes=c(rep(1,4),rep(2,4)),
 params=c(0.5,1.5,1.7),n=10)
excess.censor

Transforms data to normalized exceedances with censoring

Description
First transforms empirical marginal distributions to unit Pareto by using order statistics, second scales to 1/t, third censor values smaller than one, and then drops all vectors with no value greater than one.

Usage
excess.censor(z, t=10)
Arguments

z a matrix representing the data.
t a threshold value.

Examples

```r
raw.data <- rCMS(copulas = c(copClayton, copGumbel),
                  margins = c(marginLnorm, marginFrechet),
                  classes = c(rep(1,10), rep(2,10)),
                  params = c(0.5, 1, 5, 1, 7) n=100)
data <- excess.censor(raw.data)
```

Description

Computes the likelihood for observations of vectors of exceedances that belong to the maximum domain of attraction of a multivariate max-stable distribution whose spectral random vector is Gaussian, Log-normal or has a clustered copula distribution.

Usage

```r
excess.l(data, ln = FALSE, ...)
```

Arguments

data a matrix representing the data. Each column corresponds to one observation of a vector of exceedance with censored components. Note that all components must be larger or equal to one.

ln logical. If TRUE log-density is computed.

... further arguments to be passed to mubz.* function (where * stands for the category of the model). In particular, category is a character string indicating the model to be used: "normal", "lnormal" or "copula", and params gives the values of the parameters for which the likelihood is computed.

See Also

mubz.normal, mubz.lnormal, mubz.copula.
Examples

```r
raw.data <- rCMScopulas=c(copClayton, copGumbel),
margins=c(marginlnorm, marginFrechet),
classes=c(rep(1,4), rep(2,4)),
params=c(0.5, 1, 1.5, 1.7), n=50)
data <- excess.censor(raw.data)

d <- excess.l(data, params=c(0.5, 1, 1.5, 1.7),
category="copula",
copulas=c(copClayton, copGumbel),
margins=c(marginlnorm, marginFrechet),
classes=c(rep(1,4), rep(2,4)))
```

<table>
<thead>
<tr>
<th>margin</th>
<th>Margin distributions</th>
</tr>
</thead>
</table>

Description

Margin distributions

Usage

- marginExp
- marginFrechet
- marginGPD
- marginGamma
- marginLnorm
- marginUnif
- marginWeibull

Value

A "margin" object.

See Also

`mubz.copula` for a description of the distributions and their parameters.
margin-class margin class

Description

Class for margins types

Objects

- marginExp exponential distribution
- marginFrechet Frechet distribution
- marginGPD GPD distribution
- marginGamma Gamma distribution
- marginLnorm log-normal distribution
- marginUnif uniform distribution
- marginWeibull Weibull distribution

See Also

mubz.copula for a description of the distributions and their parameters.

maxblocks

Computes the normalized componentwise maxima with their occurrences for several blocks

Description

Splits up the data into blocks and computes the normalized componentwise maxima with their occurrences for each block

Usage

maxblocks(y,n.blocks=50)

Arguments

y a matrix representing the data.
n.blocks the numbers of blocks.

Value

returns a list l including:

l$normalized.max the normalized maxima (divided by the number of observation in a block
l$classes.max the partitions that gives which componentwise maxima occur simultaneously
maxgrid

Examples

```r
raw.data <- rCMS(copulas = c(copClayton, copGumbel),
                 margins = c(marginLnorm, marginFrechet),
                 classes = c(rep(1, 10), rep(2, 10)),
                 params = c(0.5, 1, 1.5, 1.7), n = 1000)
data <- maxblocks(raw.data, n.blocks = 20)
```

Description

Identifies the coordinates of the maximum on a grid

Usage

```r
maxgrid(dg)
```

Arguments

- `dg`: an object returned by a `dens.grid` call.

Value

returns a list `l` including parameters used in the `dens.grid` call of `l$params`, the coordinates of the maximum on the grid `l$xy`, and the value of the maximum `l$value`.

See Also

- `plot3d.densgrid` for a 3D visualisation of the computed values on the grid.

Examples

```r
n.site <- 2
xy <- matrix(runif(2 * n.site, 0, 0.5), ncol = 2)
param <- c(0.5, 1.5)
n.obs <- 2
library(SpatialExtremes)
data <- t(rmaxstab(n.obs, xy, "whitmat",
                   nugget = 0, range = param[1], smooth = param[2]))
d <- dens.grid.maxstable(data, c(NA, NA), seq(0.1, 1, length = 3), seq(1, 2, length = 3),
                         category = "normal",
                         spatial = list(sites = xy, family = spatialWhittleMatern))
maxgrid(d)$xy
```
maxlik
Maximum likelihood estimation

Description

The `maxlik.*` function family computes the maximum likelihood from data of a max-stable distribution or in the maximum domain of attraction of a max-stable distribution. `*` must be one of the following: "maxstable", "excess" or "simultoccur".

Usage

```r
maxlik.maxstable(...)  
maxlik.excess(...)  
maxlik.simultoccurr(...)
```

Arguments

- ... all the arguments to be passed to the likelihood function including:
- `data` a matrix representing the data
- `params` a vector giving the arguments to be passed to the likelihood function.
 NA indicates the coordinates that will be used for the optimization of the likelihood function.
- `start` a vector giving the initial values of the parameters
- `trace` when TRUE, prints the values where the likelihood function is evaluated
- `iterlim` the maximum number of iterations

Value

returns a list `l` including the following components: `l$estimate` giving the estimated parameter values, `l$message` giving a short message describing if the convergence is successfull, `l$iterations` giving the number of iterations...

See Also

`maxLik`, `maxstable.l.clusters`, `excess.l`, `simultoccur.l`.

Examples

```r
# ML estimation for a sample from a Schlather max-stable distribution  
# (Use larger values for n.site and n.obs to get good results!)  
n.site<-2  
n.obs<-2  
xy<-matrix(runif(2 * n.site, 0, 0.5), ncol = 2)  
param<-c(0.5, 1.5)  
library(SpatialExtremes)  
data<-t(rmaxstab(n.obs, xy, "whitmat",  
                   nugget = 0, range = param[1], smooth = param[2]))  
ml<-maxlik.maxstable(data, params=c(NA,NA), start=c(1,1),
```
ML estimation for a sample in the max domain of attraction
of from an homogeneous clustered max-stable distribution
WARNING: these exemples are quite time-consuming, but yet need
larger values for n and the dimensions for correct results

A) using excess

raw.data<-rCMS(copulas=c(copClayton,copGumbel),
 margins=c(marginlnorm,marginFrechet),
 classes=c(rep(1,3),rep(2,3)),
 params=c(0.5,1,1.5,1.7),n=20)
data<-excess.censor(raw.data)
d<-dens.grid.excess(data,c(NA,1,NA,1.7),
 seq(0.1,1,length=5),seq(1,2,length=5),
 category="copula",
 copulas=c(copClayton,copGumbel),
 margins=c(marginlnorm,marginFrechet),
 classes=c(rep(1,3),rep(2,3)))
plot3d.densgrid(d)
ml<-maxlik.excess(data,
 params=c(NA,NA,NA,NA),start=c(0.5,1,1.5,1.7),
 trace=TRUE,iterlim=20,
 category="copula",
 copulas=c(copClayton,copGumbel),
 margins=c(marginlnorm,marginFrechet),
 classes=c(rep(1,3),rep(2,3)))

B) using block maxima with occurrences

raw.data<-rCMS(copulas=c(copClayton,copGumbel),
 margins=c(marginlnorm,marginFrechet),
 classes=c(rep(1,3),rep(2,3)),
 params=c(0.5,1,1.5,1.7),n=10)
data<-maxblocks(raw.data,n.blocks=2)
d<-dens.grid.simultoccur(data$normalized.max,occur=data$classes.max,
 c(NA,1,NA,1.7),
 seq(0.1,1,length=5),seq(1,2,length=5),
 category="copula",
 copulas=c(copClayton,copGumbel),
 margins=c(marginlnorm,marginFrechet),
 classes=c(rep(1,3),rep(2,3)))
plot3d.densgrid(d)
ml<-maxlik.simultoccur(data$normalized.max,
 params=c(NA,NA,NA,NA),start=c(0.5,1,1.5,1.7),
 trace=TRUE,iterlim=20,
 occur=data$classes.max,
 category="copula",}
maxstable.l.clusters

Description

Computes the partition-composite likelihood for observations sampled from a multivariate max-stable distribution whose spectral random vector is Gaussian, Log-normal or has a clustered copula distribution.

Usage

maxstable.l.clusters(data, clusters = rep(1, dim(data)[1]), ln = FALSE, spatial = NULL, ...)

Arguments

data a matrix representing the data. Each column corresponds to one observation.

clusters a vector of integers that gives the partition that is used to compute the partition-composite likelihood. Blocks of the partition should be of size smaller or equal to 7 to avoid a too long computing time. clusters = rep(1, dim(data)[1]) must be used to get the full likelihood.

ln logical. If TRUE log-density is computed.

spatial argument passed to the mubz.* function (where * stands for the category of the model).

... further arguments to be passed to mubz.* function (where * stands for the category of the model). In particular, category is a character string indicating the model to be used: "normal", "lnormal" or "copula", and params gives the values of the parameters for which the likelihood is computed.

See Also

mubz.normal, mubz.lnormal, mubz.copula.

Examples

n.site <- 5
xy <- matrix(runif(2 * n.site, 0, 0.5), ncol = 2)

param <- c(0.5, 1.5)
n.obs <- 2
library(SpatialExtremes)
data <- t(rmaxstab(n.obs, xy, "whitmat", copulas = c(copClayton, copGumbel), margins = c(marginLnorm, marginFrechet), classes = c(rep(1,3), rep(2,3))))
mubz.copula

\[
\text{nugget} = 0, \text{ range } = \text{param}[1], \text{ smooth } = \text{param}[2])
\]

d<-maxstable.l.clusters(data, clusters=c(1,1,1,2,2),
params=param,
category="normal",
spatial=list(sites=xy, family=spatialWhittleMatern))

mubz.copula \(\mu(B, z) \) for the copula model

Description
Computes \(\mu(B, z) \) for the copula model.

Usage
mubz.copula(details=FALSE,...)

Arguments
- details get more details in the return value?
- ... See details section.

Details
mubz.copula uses integrate to compute the value of \(\mu(B, z) \). If details is TRUE, mubz.copula returns the integrate return value. If details is FALSE, mubz.copula returns the value only.

The types of distributions (with scalar parameter \(p \)) in the 'margin' class are the following: marginUnif is for the Uniform distribution with support \([1 - p, 1 + p] \); marginLnorm is for the Lognormal distribution whose the standard deviation of the normal distribution is equal to \(p \); marginWeibull is for the Weibull distribution with shape parameter equal to \(p \); marginFrechet is for the Frechet distribution with shape parameter equal to \(p \); marginGamma is for the Gamma distribution with shape parameter equal to \(p \); marginGP is for the GPD distribution with shape parameter equal to \(p \).

The types of Archimedean copulas are those implemented in the package copula: copAMH, copClayton, copFrank, copGumbel, copJoe.

Parameters of mubz.copula:
- \(b \) a vector of TRUE or FALSE, of length \(d \) where \(d=\text{length}(z) \), TRUE indicating the coordinates of \(B \)
- \(z \) a vector of positive constants
- \(\text{params} \) a vector of length \(2*\text{max} \text{classes} \), giving successively the parameters of the archimedean copula and of the marginal distribution for each class
- \(\text{cop} \) a vector of ’acopula’ objects from package copula of length \(\text{max} \text{classes} \) giving the archimedean copulas for each class
- \(\text{margins} \) a vector of objects of ‘margin’ class of length \(\text{max} \text{classes} \) giving the marginal distributions for each class
- \(\text{classes} \) a vector of integers indicating for each coordinate of \(z \) the number of its class (from 1 to \(\text{max} \text{classes} \))
See Also

mubz.normal, mubz.lnormal

Examples

In this example, we compute mu(B,z) for the independent copula
and Frechet margins.
z<-c(2,3)
kappa<-2
mu<-numeric(2)
mu[1]<-mubz.copula(b=c(TRUE,FALSE),z=z,params=c(1,kappa),
cop=c(copGumbel),margins=c(marginFrechet),classes=c(1,1))
mu[2]<-mubz.copula(b=c(FALSE,TRUE),z=z,params=c(1,kappa),
cop=c(copGumbel),margins=c(marginFrechet),classes=c(1,1))
Compares mu((1),z)+mu((2),z) with the exact value:
t(mu) %>%
(sum(1/z^kappa))/(1/kappa)

For independent components with different distributions,
one can use any "one-dimensional" copula:
mubz.copula(b=c(TRUE,FALSE),z=z,
params=c(1,2,1,3),cop=c(copGumbel,copGumbel),
margins=c(marginFrechet,marginGamma),classes=c(1,2))

mubz.lnormal $\mu(B, z)$ for the Log-normal model

Description

Computes $\mu(B, z)$ for the Log-normal model.

Usage

mubz.lnormal(b,z,params=NULL,spatial=NULL,
cov.matrix=spatial.cor.matrix(params,spatial),
details=FALSE)

Arguments

b a vector of TRUE or FALSE, of length d where d=length(z), TRUE indicating
the coordinates of B

z a vector of positive constants

params a vector of length 2 if spatial=spatialPower (Brown-Resnick max-stable pro-
cess): the first component is for the range parameter, the second component is
for the smoothness parameter.
a vector of length 3 for the other spatial models (Geometric Gaussian max-
stable process): the first component is for the range parameter, the second com-
ponent is for the smoothness parameter and the third component is for the scale
parameter
the correlation model given as a list:
spatial$sites is a matrix that gives the coordinates of each location. Each row corresponds to one location.
spatial$family is a object from the spatial class that gives the spatial model. This must be one of the following family:
- Brown-Resnick max-stable process: spatialPower
- Geometric Gaussian max-stable process: spatialWhittleMatern for the Whittle Matern correlation model, spatialCauchy for the Cauchy correlation model, spatialPowerExp for the Power exponential model, spatialBessel for the Bessel correlation model

cov.matrix a covariance matrix if spatial=NULL
details get more details in the return value?

Details
mubz.lnormal uses pmnorm to compute the value of $\mu(B, z)$. If the dimension of z is too large (cannot exceed 20), the computation may fail.

See Also
mubz.normal, mubz.copula

Examples

In this example, we compute mu(B,z) for Brown Resnick spatial model
from 10 sites uniformly distributed on the square [0,2]x[0,2]
mubz.lnormal(b=c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE),
 z=rep(1,10),params=c(1,1),
 spatial=list(sites=matrix(2*runif(20),ncol=2),family=spatialPower))

mubz.normal $\mu(B, z)$ for the Gaussian model

Description

Computes $\mu(B, z)$ for the Gaussian model.

Usage

mubz.normal(b,z,params=NULL,spatial=NULL,
 cor.matrix=spatial.cor.matrix(c(params,1),spatial),
 details=FALSE)
Arguments

- **b**: a vector of TRUE or FALSE, of length d where d=length(z), TRUE indicating the coordinates of B
- **z**: a vector of positive constants
- **params**: a vector of length 2 that must be informed if spatial is given; the first component is for the range parameter and the second component is for the smoothness parameter
- **spatial**: the correlation model given as a list:
 - **spatial$sites**: a matrix that gives the coordinates of each location. Each row corresponds to one location.
 - **spatial$family**: a object from the `spatial` class that gives the spatial model. This must be one of the following family: `spatialWhittleMatern` for the Whittle Matern correlation model, `spatialCauchy` for the Cauchy correlation model, `spatialPowerExp` for the Power exponential model, `spatialBessel` for the Bessel correlation model
- **cor.matrix**: a correlation matrix if spatial=NULL
- **details**: get more details in the return value?

Details

- `mubz.normal` uses `mnormpow` to compute the value of $\mu(B, z)$. If the dimension of z is too large (cannot exceed 20), the computation may fail.

See Also

- `mubz.lnormal`, `mubz.copula`

Examples

```r
# In this example, we compute mu(B,z) for Whittle Matern spatial model
# from 10 sites uniformly distributed on the square [0,2)x[0,2]
mu.b.normal(b=c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE),
            z=rep(1,10),params=c(1,2),
            spatial=list(sites=matrix(2*runif(20),ncol=2),family=spatialWhittleMatern))
```

plot3d.densgrid

3D visualisation of the computed values of the likelihood function on a grid.

Description

3D visualization for maximum likelihood computed by `densgrid`.

Usage

`plot3d.densgrid(dg,...)`
rcms

Simulation of vectors in the maximum domain of attraction of an homogeneous clustered max-stable distribution

Description

Generates realisations of vectors in the maximum domain of attraction of an homogeneous clustered max-stable distribution.

Usage

rcms(copulas,margins,classes,params,n=100)

Arguments

copulas a vector of 'acopula' objects from package copula of length max(classes) giving the archimedean copulas for each class
margins a vector of objects of 'margin' class of length max(classes) giving the marginal distributions for each class
classes a vector of integers indicating for each component the number of its class (from 1 to max(classes))
params a vector of length 2*max(classes), giving successively the parameters of the archimedean copula and of the marginal distribution for each class
n an integer giving the number of observations

Details

A vector is generated as the product of two independent random variables: a unit Pareto random variable and a random vector whose components are independent sub-vectors with distributions (copula,margin).

Examples

raw.data<-rcms(copulas=c(copClayton,copGumbel),
margins=c(marginLnorm,marginFrechet),
classes=c(rep(1,10),rep(2,10)),
params=c(0.5,1,1.5,1.7),n=1000)
data<-excess.censor(raw.data)
rSchlatherExcess
Simulation of vectors in the maximum domain of attraction of a spatial Schlather max-stable distribution

Description

Generates realisations of vectors in the maximum domain of attraction of a spatial Schlather max-stable distribution.

Usage

```
rSchlatherExcess(n=500, spatial, params)
```

Arguments

- `n`
 an integer giving the number of observations

- `spatial`
 the correlation model given as a list:

 `spatial$sites` is a matrix that gives the coordinates of each location. Each row corresponds to one location.

 `spatial$family` is an object from the `spatial` class that gives the spatial model. This must be one of the following family: `spatialWhittleMatern` for the Whittle Matern correlation model, `spatialCauchy` for the Cauchy correlation model, `spatialPowerExp` for the Power exponential model, and `spatialBessel` for the Bessel correlation model

- `params`
 A vector of length 2 that must be informed if `spatial` is given; the first component is for the range parameter and the second component is for the smoothness parameter.

Details

A vector is generated as the product of two independent random variables: a unit Pareto random variable and a Gaussian random vector whose covariance matrix is derived from the spatial model. The package MASS must be loaded to generate Gaussian random vectors.

Examples

```r
library(MASS)
rSchlatherExcess(n=500,
spatial=list(sites=matrix(2*runif(20),ncol=2),family=spatialWhittleMatern),
params=c(1,2))
```
select.mean

Description

Selects vectors for which the mean of the components is larger than a threshold.

For a matrix, first computes the mean of each column, second drop all column whose mean is less than a threshold, third returns the radial-angular decompositions.

Usage

select.mean(data, t)

Arguments

data a matrix representing the data.
t a threshold value.

Value

returns a list l including:

l$selected the normalized selected vectors (divided by the threshold)
l$u their angular part
l$gamma their radial part

See Also

excess.censor

Examples

raw.data<-rCMS(copulas=c(copClayton,copGumbel), margins=c(marginLognorm,marginFrechet), classes=c(rep(1,10),rep(2,10)), params=c(c(0.5,1,1.5,1.7), n=1000)
data<-select.mean(raw.data, t=10)
simultoccur.l

Likelihood for vectors of componentwise maxima with additional information on maxima occurrences

Description
Computes the likelihood for observations of vectors of componentwise maxima with additional information on maxima occurrences. The data that are used to compute componentwise maxima must belong to the maximum domain of attraction of a multivariate max-stable distribution whose spectral random vector is Gaussian, Log-normal or has a clustered copula distribution.

Usage
simultoccur.l(data, occur, ln=FALSE, ...)

Arguments
- data: a matrix representing the data. Each column corresponds to one observation of a vector of componentwise maxima.
- occur: a matrix representing the data. Each column corresponds to one observation of a vector that gives which componentwise maxima occur simultaneously.
- ln: logical. If TRUE log-density is computed.
- ...: further arguments to be passed to mubz.* function (where * stands for the category of the model). In particular, category is a character string indicating the model to be used: "normal", "lnormal" or "copula", and params gives the values of the parameters for which the likelihood is computed.

See Also
mubz.normal, mubz.lnormal, mubz.copula.

Examples

```R
raw.data<-rCMS(copulas=c(copClayton,copGumbel),
    margins=c(marginLnorm,marginFrechet),
    classes=c(rep(1,3),rep(2,3)),
    params=c(0.5,1,1.5,1.7),n=20)
data<-maxblocks(raw.data,n.blocks=3)

d<-simultoccur.l(data$normalized.max,occur=data$classes.max,
    params=c(0.5,1,1.5,1.7),
    category="copula",
    copulas=c(copClayton,copGumbel),
    margins=c(marginLnorm,marginFrechet),
    classes=c(rep(1,3),rep(2,3)))
```
Spatial models

Description
Spatial models

Usage
spatialWhittleMatern
spatialCauchy
spatialPower
spatialPowerexp
spatialBessel

Value
A "spatial" object.

spatial-class

Description
Class for spatial models

Objects
spatialWhittleMatern for the Whittle Matern correlation model
spatialCauchy for the Cauchy correlation model
spatialPower for the power model
spatialPowerexp for the power exponential model
spatialBessel for the Bessel correlation model
Index

build.clusters.spatial, 2

dens.grid, 3
dens.grid.excess, 17
dens.grid.maxstable, 17
dens.grid.simultoccur, 17

excess.censor, 5, 19
excess.l, 4, 6, 10, 17

margin, 7, 7
margin-class, 8
marginExp(margin), 7
marginFrechet(margin), 7
marginGamma(margin), 7
marginGPD(margin), 7
marginLnorm(margin), 7
marginUnif(margin), 7
marginWeibull(margin), 7

maxblocks, 8

maxgrid, 9
maxLik, 10

maxstable.l.clusters, 4, 10, 12, 17

mubz.copula, 6–8, 12, 13, 15, 16, 20
mubz.l.normal, 6, 12, 14, 14, 16, 20
mubz.normal, 6, 12, 14, 15, 15, 20

plot3d.densgrid, 4, 9, 16

rCMS, 17
rSchlatherExcess, 18

select.mean, 19
simultoccur.l, 4, 10, 17, 20
spatial, 21, 21
spatial-class, 21
spatialBessel(spatial), 21
spatialCauchy(spatial), 21
spatialPower(spatial), 21
spatialPowerexp(spatial), 21
spatialWhittleMatern(spatial), 21